52 research outputs found

    Repeated high doses of avermectins cause prolonged sterilisation, but do not kill, Onchocerca ochengi adult worms in African cattle

    Get PDF
    BACKGROUND: Ivermectin (Mectizan™, Merck and CO. Inc.) is being widely used in the control of human onchocerciasis (Onchoverca volvulus) because of its potent effect on microfilariae. Human studies have suggested that, at the standard dose of 150 μg/kg an annual treatment schedule of ivermectin reversibly interferes with female worm fertility but is not macrofilaricidal. Because of the importance of determining whether ivermectin could be macrofilaricidal, the efficacy of high and prolonged doses of ivermectin and a related avermectin, doramectin, were investigated in cattle infected with O. ochengi. METHODS: Drugs with potential macrofilaricidal activity, were screened for the treatment of human onchocerciasis, using natural infections of O. ochengi in African cattle. Three groups of 3 cows were either treated at monthly intervals (7 treatments) with ivermectin (Ivomec(®), Merck and Co. Inc.) at 500 μg/kg or doramectin (Dectamax(®), Pfizer) at 500 μg/kg or not treated as controls. Intradermal nodules were removed at 6 monthly intervals and adult worms were examined for signs of drug activity. RESULTS: There was no significant decline in nodule diameter, the motility of male and female worms, nor in male and female viability as determined by the ability to reduce tetrazolium, compared with controls, at any time up to 24 months from the start of treatments (mpt). Embryogenesis, however, was abrogated by treatment, which was seen as an accumulation of dead and dying intra-uterine microfilariae (mf) persisting for up to 18 mpt. Skin mf densities in treated animals had fallen to zero by <3 mpt, but by 18 mpt small numbers of mf were found in the skin of some treated animals and a few female worms were starting to produce multi-cellular embryonic stages. Follow-up of the doramectin treated group at 36 mpt showed that mf densities had still only regained a small proportion of their pre-treatment levels. CONCLUSION: These results have important implications for onchocerciasis control in the field. They suggest that ivermectin given at repeated high does may sterilise O. volvulus female worms for prolonged periods but is unlikely to kill them. This supports the view that control programmes may need to continue treatments with ivermectin for a period of decades and highlights the need to urgently identify new marcofiliaricidal compounds

    Efficacy of Three-Week Oxytetracycline or Rifampin Monotherapy Compared with a Combination Regimen against the Filarial Nematode Onchocerca ochengi

    Get PDF
    Onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, is a major cause of visual impairment and dermatitis in sub-Saharan Africa. As O. volvulus contains an obligatory bacterial symbiont (Wolbachia), it is susceptible to antibiotic chemotherapy, although current regimens are considered too prolonged for community-level control programs. The aim of this study was to compare the efficacies of oxytetracycline and rifampin, administered separately or in combination, against a close relative of O. volvulus (Onchocerca ochengi) in cattle. Six animals per group were treated with continuous or intermittent oxytetracycline regimens, and effects on adult worm viability, dermal microfilarial loads, and Wolbachia density in worm tissues were assessed. Subsequently, the efficacies of 3-week regimens of oxytetracycline and rifampin alone and a combination regimen were compared, and rifampin levels in plasma and skin were quantified. A 6-month regimen of oxytetracycline with monthly dosing was strongly adulticidal, while 3-week and 6-week regimens exhibited weaker adulticidal effects. However, all three regimens achieved >2-log reductions in microfilarial load. In contrast, rifampin monotherapy and oxytetracycline-rifampin duotherapy failed to induce substantive reductions in either adult worm burden or microfilarial load, although a borderline effect on Wolbachia density was observed following duotherapy. Dermal rifampin levels were maintained above the MIC for >24 h after a single intravenous dose. We conclude that oxytetracycline-rifampin duotherapy is less efficacious against O. ochengi than oxytetracycline alone. Further studies will be required to determine whether rifampin reduces oxytetracycline bioavailability in this system, as suggested by human studies using other tetracycline-rifampin combinations

    UMF-078: A modified flubendazole with potent macrofilaricidal activity against Onchocerca ochengi in African cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human onchocerciasis or river blindness, caused by the filarial nematode <it>Onchocerca volvulus</it>, is currently controlled using the microfilaricidal drug, ivermectin. However, ivermectin does not kill adult <it>O. volvulus</it>, and in areas with less than 65% ivermectin coverage of the population, there is no effect on transmission. Therefore, there is still a need for a macrofilaricidal drug. Using the bovine filarial nematode <it>O. ochengi </it>(found naturally in African cattle), the macrofilaricidal efficacy of the modified flubendazole, UMF-078, was investigated.</p> <p>Methods</p> <p>Groups of 3 cows were treated with one of the following regimens: (a) a single dose of UMF-078 at 150 mg/kg intramuscularly (im), (b) 50 mg/kg im, (c) 150 mg/kg intraabomasally (ia), (d) 50 mg/kg ia, or (e) not treated (controls).</p> <p>Results</p> <p>After treatment at 150 mg/kg im, nodule diameter, worm motility and worm viability (as measured by metabolic reduction of tetrazolium to formazan) declined significantly compared with pre-treatment values and concurrent controls. There was abrogation of embryogenesis and death of all adult worms by 24 weeks post-treatment (pt). Animals treated at 50 mg/kg im showed a decline in nodule diameter together with abrogated reproduction, reduced motility, and lower metabolic activity in isolated worms, culminating in approximately 50% worm mortality by 52 weeks pt. Worms removed from animals treated ia were not killed, but exhibited a temporary embryotoxic effect which had waned by 12 weeks pt in the 50 mg/kg ia group and by 24 weeks pt in the 150 mg/kg ia group. These differences could be explained by the different absorption rates and elimination half-lives for each dose and route of administration.</p> <p>Conclusion</p> <p>Although we did not observe any signs of mammalian toxicity in this trial with a single dose, other studies have raised concerns regarding neuro- and genotoxicity. Consequently, further evaluation of this compound has been suspended. Nonetheless, these results validate the molecular target of the benzimidazoles as a promising lead for rational design of macrofilaricidal drugs.</p

    Lack of Serologic Evidence of Neospora caninum in Humans, England

    Get PDF
    Retrospective testing of 3,232 serum samples from the general population and 518 serum samples from a high-risk group showed no evidence of human exposure to Neospora caninum in England. Results were obtained by using immunofluorescence antibody testing and ELISA to analyze frequency distribution

    Of Mice, Cattle, and Humans: The Immunology and Treatment of River Blindness

    Get PDF
    River blindness is a seriously debilitating disease caused by the filarial parasite Onchocerca volvulus, which infects millions in Africa as well as in South and Central America. Research has been hampered by a lack of good animal models, as the parasite can only develop fully in humans and some primates. This review highlights the development of two animal model systems that have allowed significant advances in recent years and hold promise for the future. Experimental findings with Litomosoides sigmodontis in mice and Onchocerca ochengi in cattle are placed in the context of how these models can advance our ability to control the human disease

    Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy

    Get PDF
    Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species

    Immunisation with a Multivalent, Subunit Vaccine Reduces Patent Infection in a Natural Bovine Model of Onchocerciasis during Intense Field Exposure

    Get PDF
    Human onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is controlled almost exclusively by the drug ivermectin, which prevents pathology by targeting the microfilariae. However, this reliance on a single control tool has led to interest in vaccination as a potentially complementary strategy. Here, we describe the results of a trial in West Africa to evaluate a multivalent, subunit vaccine for onchocerciasis in the naturally evolved host-parasite relationship of Onchocerca ochengi in cattle. Naïve calves, reared in fly-proof accommodation, were immunised with eight recombinant antigens of O. ochengi, administered separately with either Freund's adjuvant or alum. The selected antigens were orthologues of O. volvulus recombinant proteins that had previously been shown to confer protection against filarial larvae in rodent models and, in some cases, were recognised by serum antibodies from putatively immune humans. The vaccine was highly immunogenic, eliciting a mixed IgG isotype response. Four weeks after the final immunisation, vaccinated and adjuvant-treated control calves were exposed to natural parasite transmission by the blackfly vectors in an area of Cameroon hyperendemic for O. ochengi. After 22 months, all the control animals had patent infections (i.e., microfilaridermia), compared with only 58% of vaccinated cattle (P = 0.015). This study indicates that vaccination to prevent patent infection may be an achievable goal in onchocerciasis, reducing both the pathology and transmissibility of the infection. The cattle model has also demonstrated its utility for preclinical vaccine discovery, although much research will be required to achieve the requisite target product profile of a clinical candidate

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore