36 research outputs found

    Auditory-inspired morphological processing of speech spectrograms: applications in automatic speech recognition and speech enhancement

    Get PDF
    New auditory-inspired speech processing methods are presented in this paper, combining spectral subtraction and two-dimensional non-linear filtering techniques originally conceived for image processing purposes. In particular, mathematical morphology operations, like erosion and dilation, are applied to noisy speech spectrograms using specifically designed structuring elements inspired in the masking properties of the human auditory system. This is effectively complemented with a pre-processing stage including the conventional spectral subtraction procedure and auditory filterbanks. These methods were tested in both speech enhancement and automatic speech recognition tasks. For the first, time-frequency anisotropic structuring elements over grey-scale spectrograms were found to provide a better perceptual quality than isotropic ones, revealing themselves as more appropriate—under a number of perceptual quality estimation measures and several signal-to-noise ratios on the Aurora database—for retaining the structure of speech while removing background noise. For the second, the combination of Spectral Subtraction and auditory-inspired Morphological Filtering was found to improve recognition rates in a noise-contaminated version of the Isolet database.This work has been partially supported by the Spanish Ministry of Science and Innovation CICYT Project No. TEC2008-06382/TEC.Publicad

    Neutrophil count is associated with reduced gray matter and enlarged ventricles in first-episode psychosis

    Get PDF
    Although there is recent evidence that cells from the peripheral immune system can gain access to the central nervous system in certain conditions such as multiple sclerosis, their role has not been assessed in psychosis. Here, we aimed to explore whether blood cell count was associated with brain volume and/or clinical symptomatology. A total of 218 participants (137 first-episode psychosis patients [FEP] and 81 healthy controls [HC]) were included in the study. For each participant, a T1 structural image was acquired, from which brain tissue volumes were calculated. We found that, in FEP, neutrophil count was associated with reduced gray matter (GM) volume (ß = -0.117, P < .001) and increased cerebrospinal fluid volume (ß = 0.191, P = .007). No associations were observed in HC. GM reduction was generalized but more prominent in certain regions, notably the thalamus, the anterior insula, and the left Heschl''s gyrus, among many others. Neutrophil count was also associated with the total PANSS score (ß = 0.173, P = .038), including those items assessing hallucinations (ß = 0.182, P = .028) and avolition (ß = 0.197, P = .018). Several confounders, such as antipsychotic medication, body mass index, and smoking, were controlled for. Overall, the present study may represent the first indirect evidence of brain tissue loss associated with neutrophils in psychosis, and lends support to the hypothesis of a dysregulated immune system. Higher neutrophil count was also associated with more severe clinical symptomatology, which renders it a promising indicator of schizophrenia severity and could even give rise to new therapies

    Opposite cannabis-cognition associations in psychotic patients depending on family history

    Get PDF
    The objective of this study is to investigate cognitive performance in a first-episode psychosis sample, when stratifying the interaction by cannabis use and familial or non-familial psychosis. Hierarchical-regression models were used to analyse this association in a sample of 268 first-episode psychosis patients and 237 controls. We found that cannabis use was associated with worse working memory, regardless of family history. However, cannabis use was clearly associated with worse cognitive performance in patients with no family history of psychosis, in cognitive domains including verbal memory, executive function and global cognitive index, whereas cannabis users with a family history of psychosis performed better in these domains. The main finding of the study is that there is an interaction between cannabis use and a family history of psychosis in the areas of verbal memory, executive function and global cognition: that is, cannabis use is associated with a better performance in patients with a family history of psychosis and a worse performance in those with no family history of psychosis. In order to confirm this hypothesis, future research should explore the actual expression of the endocannabinoid system in patients with and without a family history of psychosis

    Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at √SNN = 5.02 TeV

    Get PDF
    Transverse momentum spectra of charged particles are measured by the CMS experiment at the CERN LHC in pPb collisions at [Formula: see text][Formula: see text], in the range [Formula: see text][Formula: see text] and pseudorapidity [Formula: see text] in the proton-nucleon center-of-mass frame. For [Formula: see text][Formula: see text], the charged-particle production is asymmetric about [Formula: see text], with smaller yield observed in the direction of the proton beam, qualitatively consistent with expectations from shadowing in nuclear parton distribution functions (nPDF). A pp reference spectrum at [Formula: see text][Formula: see text] is obtained by interpolation from previous measurements at higher and lower center-of-mass energies. The [Formula: see text] distribution measured in pPb collisions shows an enhancement of charged particles with [Formula: see text][Formula: see text] compared to expectations from the pp reference. The enhancement is larger than predicted by perturbative quantum chromodynamics calculations that include antishadowing modifications of nPDFs

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore