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Abstract A set of auditory-inspired features for speech

processing is presented in this paper. The proposed

acoustic features combine spectral subtraction and two-

dimensional non-linear filtering techniques most usually

employed for image processing. In particular, morpho-

logical operations like erosion and dilation are applied

to a noisy speech spectrogram that has been previously

enhanced by a conventional spectral subtraction pro-

cedure and filtered by an auditory filterbank. These

methods had been applied both to speech enhance-

ment and recognition. In the first application, aniso-

tropic structural elements on gray-scale spectrograms

have been found to provide a better perceptual quality

than isotropic and reveal themselves as more appropri-

ate for retaining the speech structure while removing

background noise. A number of perceptual quality esti-

mation measures have been employed for several Signal-

to-Noise Ratios on the Aurora database. For speech

recognition, the combination of spectral substraction

and auditory-inspired morphological filtering has been

found to improve the recognition rate in a noisy Isolet

database.
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1 Introduction

Machine performance in Speech Recognition tasks is

still far from that of humans [4].

The standard model conceptualizes the recognition

process as a virtual channel in which word articula-

tions (issued from the speaker’s mind) are introduced

and word percepts (selected among the receiver’s hy-

potheses) are recognized. Data-driven statistical mod-

eling techniques have made speech technologies lift off,

enabling the introduction of these technologies into a

variety of every day’s applications.

With increased exposure to the public and the rise

of commercial expectations, the sophistication and im-

provement of Speech Technology relies more and more

on the Machine-Learning capabilities of computers. But

the emphasis on Machine-Learning algorithms often comes

at the expense of genuine insight into the nature of Spo-

ken Language [16], which has brought about an ever-

widening divide between the interests of phoneticians

and linguists, on the one hand, and speech technolo-

gists, on the other. Yet, the suspicion looms above the

latter crowd that the performance of some technologies

stemming from this model is plateauing (Speech Recog-

nition performance, notably) and the field is in need of

a new technological paradigm.

In ASR (Automatic Speech Recognition), the stan-

dard procedure begins with the encoding of the speech

signal as a string of feature vectors (also called acous-

tic frames) [36]. This is followed by an acoustic decod-

ing stage where a maximum-likelihood (ML) strategy

is applied to a set of generative models (e.g. the Hid-
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den Markov Models, HMM) and the feature vectors to

obtain a basic speech-unit percept correlate. Finally,

the linguistic decoding process brings to bear the lexi-

cal and linguistic resources needed to obtain the word

sequences [25, 1].

Among non-satisfactorily tackled challenges in ASR

are various types of speech variability (rate, accent, di-

alect, gender, etc.) and background noise. One way to

address these limitations is trying to imitate human

acoustic capabilities, e.g. finding a more suitable audi-

tory model.

In this paper we focus on the noise problem where

humans are known to perform remarkably well whilst

machines still lag behind [36]. There are many solu-

tions inspired by the human auditory system aimed at

solving this issue, e.g. feature extraction based on the

well-known mel-frequency cepstral coefficients (MFCC,

[7]), and on the Gammatone-based coefficients (GTC,

[41]). Other solutions use the so-called spectro-temporal

features, that consider both the time and frequency do-

mains in the feature extraction stage ([32, 19]).

Following that line of work, in this paper we use

morphological filtering over the spectrogram of a noisy

signal to mimic some properties of the Human Auditory

System (HAS), such as frequency and temporal mask-

ing, thereby filtering out as much noise as possible [9].

Morphological filtering is an image-processing tool

for extracting image components that are useful for

purposes like thinning, pruning, structure enhancement

and noise filtering [15]. Since our goal is to empha-

size the areas of interest of the spectrogram, the struc-

tural element shapes should be based on the spectro-

temporal masking properties of the HAS, as in [9]. Our

approach consists on substituting binary structural ele-

ments—thus avoiding the need for thresholding—by full

gray-scale ones and we propose anisotropic structural

elements as a means to better characterize the response

of the ear.

Previous to the application of these ideas in ASR

taks, we present some experiments for speech enhance-

ment in order to assess the benefits of morphological

filtering. Spectral Subtraction (SS, [3]) is used as a

preprocessing stage to subsequently apply morphologi-

cal filtering on the spectrogram thus producing a per-

ceptually enhanced signal where musical noise (mainly

caused by SS) has been reduced. In order to thoroughly

evaluate the filtered signals we use a large quantity of

speech utterances which, on the other hand, precludes

the use of subjective quality measures. For this reason,

estimations of these subjective opinions are computed

from a set of objective quality measures [21, 22, 38, 2].

Finally, we apply this method on ASR tasks. In par-

ticular, we have have applied morphological filtering

on a cochleogram with structural elements designed to

model the HAS masking effects. This new features had

been tested on a hybrid MLP/HMM recognizer.

This paper is organized as follows: section 2 intro-

duces the main notions of the HAS employed in this

paper in section 3, we present the preprocessing stage,

spectrogram calculation and spectral subtraction. Sec-

tion 4 is devoted to the explanation of our vision of

morphological processing to imitate HAS capabilities.

Finally, in sections 5 and 6 we describe two applica-

tions of the proposed method (Speech Enhancement

and ASR, respectively) and end with some conclusions

and ideas for future work in section 7.

2 Speech Processing at the Cochlear Level

2.1 Sound level

The basic quantity over which perception of sound is

measured is sound pressure level which is a normalized,

logarithmic1 sound pressure:

Lp = 20 log
p

p0
(dB SPL) (1)

where p is sound pressure and p0 = 20 µPa is the ref-

erence sound pressure, the lowest audible pressure for

human ears at mid-frequencies.

Another quantity is sound (intensity) level, a nor-

malized, logarithmic intensity level:

LI = 10 log
I

I0
(dB SL) (2)

where I ∝ p2 is acoustic intensity, an energy related

quantity. When using I0 = 10−12N/m2 for reference,

both levels can be equated and we drop the subindex:

L = 20 log
p

p0
(dB SPL) = 10 log

I

I0
(dB SL) (3)

Both dB SPL and dB SL could, in this case, be simple

notated as dB.

2.2 Auditory filterbank description

It is widely accepted that the cochlea carries out a log-

arithmic compression of the auditory range whereby

higher frequency intervals are represented with less de-

tail than lower frequency ranges. This realisation stems

from experiments to detect critical bands, which is the

frequency bandwidth around a center frequency whose

1 Unless otherwise noted log refers in this paper to base-10
logarithms.
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components affect the sound level and pitch perception

of the center frequency.

In this light, the notion of an auditory filterbank

relates three concepts:

– A discretization of a frequency range into N bands.

– A choice of the center of the bands to be related to

special frequencies or frequency ranges in the inner

ear, which entails the definition of a frequency scale.

– A choice of the bandwiths and shapes of the different

filters that takes into consideration the notion of

critical bands.

The use of logarithmic frequency scales eases the con-

ceptualization of phenomena like masking (see Figure 1),

and we will consider several scales of logarithmic fre-

quency: Mel, Bark and the Equivalent Rectangular Band-

width -induced (ERB) scale. All of them use methods

to calculate the critical bandwidths at different cen-

ter frequencies and at the same time define scales of

equal difference in perception of pitches/levels related

to those center frequencies.

2.2.1 The MEL scale

The Mel scale is a very well-known logarithmic transfor-

mation of the frequency scale due to Stevens, Volkman

and Newmann in 1937 [40]:

Fm(f) = 2595 log(1 +
f

0.7
) (4)

m in mel and f in kHz. This frequency transformation

is in the core of the most popular feature extraction

procedure in ASR: the Mel Frequency Cepstral Coef-

ficients (MFCC) where a filterbank of triangular over-

lapping filters uniformly distributed in the mel scale is
usually employed. This is one of our choices for testing

our thesis as will be explained in section 6.

2.2.2 Critical band and critical-band rate scale

The Bark scale was first defined by Zwicker and col-

leagues but the actual formulas for transforming from

linear frequency to bark scale have been taken from

[44, 17]2:

Fz(f) = 13 · arctan(0.76 · f) + 3.5 · arctan(f/7.5) (5)

with critical band rate, z in bark and f in kHz.

The formula for calculating the critical bandwidth

for each frequency is [44, 17]:

BWz(f) = 25 + 75 · (1 + 1.4 · f)0.69 (6)

with bandwidths in Hz and frequencies in kHz.

2 Although the original name of the scales are different,
to pave the way for later notation, we are going to introduce
our own names for the logarithmic scales, resp. m, z and ERB
rate

2.2.3 ERB and ERB-rate

The ERB was defined in [33, 14] as a more adjusted

measurement of the critical band:

BWERB(f) = 6.23 · f2 − 93.39 · f + 28.52 (f in kHz)

(7)

Based upon these bands a new logarithmic scale

may be defined, the ERB-rate [33]

FERB(f) = 11.17 · log
∣∣∣ f+0.312
f+14.675

∣∣∣+ 43.0 (f in kHz) (8)

or the ERBN number, [14, 34]:

ERBNnumber(f) = 21.4 log(4.37f + 1) (9)

This scaling is at the base of the Gammatone fil-

terbank, an alternative to the one employed by MFCC

that will be employed in our tests (see section 6). This

filterbank is defined in the time domain by its impulse

response[35]:

f(t) = ktn−1exp(−2πBt)cos(2πfct+ φ) (10)

where k defines the output gain, n is the order of the

filter (in the range 3-5 the filter is a good approximation

of the human auditory filter), B defines the bandwidth,

fc is the filter’s central frequency and φ is the phase.

2.3 Masking

Masking is a phenomenon whereby the perception of

some frequency is affected by another frequency, the

masker frequency to the extent that masked frequencies

may dissapear from perception. Our conceptual take is

that all other masking behaviours (with narrow and

wide band maskers) can be obtained by appropriated

addition of tone maskers, so we will only consider this

type of maskers herein. A masking tone will be defined

as

tFm(F ) = Lmδ(F − Fm), (11)

where F is a choice of a logarithmic transformation as

the ones presented in section 2.2, Lm is the SPL of

the tone and Fm is the appropriately scaled masker

frequency.

Cochlear masking has been studied mainly as it re-

gards the influence of some frequencies on others si-

multaneously present in the spectrum, or simultaneous

masking, or as regards the influence of the same fre-

quencies at different time instants, or temporal mask-

ing.
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2.3.1 Simultaneous masking

Simultanous masking is the minimum sound pressure

level of a test sound, probe or signal (normally a pure

tone) that is audible in the presence of a masker. By

varying the frequency of the probe throughout the spec-

trum a masking pattern may be obtained. As it hap-

pens, the shape and sound pressure level Lm of the

masker is quite determinant of the masking pattern.

Regarding the change of masking with masker pa-

rameters, [43] note that simultaneous masking is better

represented in logarithmic scales.

Indeed, Figure 1 shows the masked thresholds for

masker tones of the same Lm = 60dB SPL at different

frequencies in linear (a), log-linear (b) and bark scale

(c), (in variables f , F = log f and Fz, see section 2.2.2,

respectively). We can see a greater regularity in spacing

an masker slopes in the latter, a consistent finding in

other auditorily-motivated scales.

Similarly, simultaneous masking produced by narrow-

band maskers is level-dependent and therefore has clearly

a non-linear effect, as shown in Figure 2.

2.3.2 Temporal masking

Premasking (or backwards masking) occurs before the

appearance of the masker, while postmasking (or for-

ward masking) happens after the masker. Premasking

all but disappears around 50ms before the masker while

the influence of postmasking may last as far as 500ms

after the masking [11, p. 196]. Hence, premasking might

be important for the masking of occlusives or affricates

while postmasking will definitely be an issue for the

longer-lasting sounds like vowels or nasals, perhaps even

fricatives.

Figure 3 shows the conventions to describe temporal

masking for long maskers.∆t with positive and negative

values describes the temporal delay since masker onset

time, while td describes time delay after masker turn-

off.

2.3.3 Premasking

Premasking is noticeable about 20ms prior to the masker

regardless of its level. This would call for a dependency

on level (to make the growing exponential rate higher

the higher the level), but we model it with a constant

slope of 8ms to mimic postmasking with short bursts

of duration less than 5ms (see below).

2.3.4 Postmasking

There is the question of modelling post-masking with

different lengths of masker :

Fig. 1: Masking curves for a 60dB masker along the

auditory range[taken from 45] in linear (a), log-linear

(b) and bark scale (c).

– there is almost no decay for the first 5ms after the

masker is switched off. The values amount to those

observed for simultaneous masking [10, p. 83]. This

would seem to rule out exponential decay as a model

for postmasking.

– forward masking for a long duration masker (bigger

than 5ms) lasts for 200ms regardless of noise level.

– For a uniform masking noise of 60dB, when the

masker lasts for around 200ms the decaying time

of the masker increases [10].

We are going to assume that the important model is

that of masking evoked by short-duration maskers and

let an additive model account for the decrease in slopes

for longer masker durations.
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Fig. 3: Regions within which premasking, simultaneous masking and postmasking occur [from 10, fig. 4.17, p. 78].

Fig. 2: Threshold in quiet and masking curves for a

1kHz masker [taken from 45].

A fitted model for post-masking is presented in [26]

and later taken on by [17]:

M(td, Lm) = a(b− log td)(Lm − c) (12)

where M is the amount of masking, td is the signal

delay in ms as depicted in figure 3, Lm is the masker

level in dB SL, and a, b and c are parameters obtained

by fitting the curve to the data. In particular,

– a(Lm) is related to the slope of the time course of

masking for a given masker level Lm.

– b is the logarithmic of the probe-masker delay inter-

cept.

– c is the intercept when masker level is expressed in

dB SL.

Note that this model disregards the variation of amount

of masking with masker frequency.

This model has to be extended to take into consid-

eration simultaneous masking.

2.3.5 Addition of the Threshold in Quiet

The actual masker threshold caused by any masker in

the previous models is seen as linear in logarithmic de-

lay and logarithmic frequency for non-simultaneous and

simultaneous masking, respectively. This would entail

very low masking amounts for delays (resp. frequencies)

far away from the time-frequency of the masker.

Of course, this has to be corrected with the so-called

threshold in quiet (THQ) to achieve the correct thresh-

old surface. This threshold under which no sound is

perceived can be modelled as [17],

THQTS≥500(f) = 3.64f−0.8 + 6.5e(f−3.3)
2

+ 0.0001f

THQTS<500(f, ) = THQTS≥500(f)

+ (7.53− 6.5 · 10−3f3) log10(500− Ts)

where TS is the duration time of the masker employed

in the empirical determination of these expressions.

The combination that immediately comes to mind,

the maximum:

LM (td, f, Lm) = max(M(td, Lm), THQ(f)) (13)

is clearly wrong on experimental accounts: the skirts

of the presented masker seem to taper off smoothly to-

wards the threshold-in-quiet. Nonetheless, it is an ac-

ceptable approximation in most frequency ranges that

we have assumed as a flooring in the spectrograms re-

sulting from our processing.

2.3.6 Final considerations

It seems that the masking capabilities of the cochlea

co-evolved in the presence of a noise that has the pecu-

liarity of raising masking thresholds uniformly, that is

giving a flat frequency response. This noise, adequately
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named as uniformly masking noise (UMN) [42] has the

aspect of a broadband lowpass noise (with cutoff fre-

quency in the range of vocal frequencies). Interestingly,

this can also be considered an idealised version of the

spectrum of human speech.

For this reason and the preceding discussion, in this

paper we will model the response of the cochlea to tone

maskers and trust in morphological processing mecha-

nism to provide for the flattening action on the masked

thresholds, as will be explained in section 4.

3 Spectrogram and Spectral Subtraction

As revealed in section 2 the effects of auditory masking

can be observed both in time and frequency domains

requiring a two dimensional representation to jointly

consider the two of them. In this situation, a spectro-

gram is a natural choice since it expresses the speech

signal spectral energy density as a function of time [28].

This popular depiction shows the temporal evolu-

tion of formant positions, harmonics and other com-

ponents of speech. The spectrograms are usually dis-

played as gray-scale or heatmap images and typically,

the larger energy magnitudes in the spectrum are dis-

played in white (or warm, in case of heatmaps) colours

and the valleys (e.g. silences) in dark (or cold) colours.

This is illustrated in Figures 4a and 4b by the spectro-

grams for clean and noisy signals.

On the other hand, the application of an auditory

motivated scale in the frequency domain (see section

2.2) produces a more uniform representation of the si-

multaneous masking effects (see section 2.3.1) that is

certainly more amenable for a computational modelling

since the masking threshold becomes almost indepen-

dent of the scaled frequency. An auditory spectrogram

(sometimes referred as cochleogram) substitutes the usual

linear spectral representation (resulting from a Discrete

Fourier Transform) by auditory motivated filterbanks

uniformly distributed in a scaled frequency.

Another preprocessing technique employed in this

paper is the conventional Spectral Substraction (SS)

procedure [3] that applied on the noisy spectrogram as

can be observed in figure 4c will be regarded as our

baseline system. However, this method is known to ex-

hibit what is called musical noise, i.e., rough transitions

between the speech signal and the areas with removed

noise become noticeable and unpleasant to a human

listener. Among other aspects, our proposal aims at at-

tenuating this pernicious behavior while preserving the

main speech features.

(a) Clean Spectrogram

(b) Noisy Spectrogram

(c) Noisy Spectrogram + Spectral Subtraction

Fig. 4: Resulting spectrograms of a noisy utterance with

added metro noise at 10dB SNR after spectral subtrac-

tion.

4 Morphological Filtering of Speech Signals

Mathematical Morphology is a theory for the analysis of

spatial structures [39] whose main application domain

is in Image Processing as a tool for thinning, pruning,

structure enhancement, object marking, segmentation

and noise filtering [15, 8].

It may be used on both black and white and gray-

scale images, and in this paper, we report on its use for

morphological filtering (MF).
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4.1 Morphological filtering for continuous signals

The basic operations in gray-scale morphology are ero-

sion and dilation. Let S(f, t) and M(f, t) be two-di-

mensional signals. Their erosion (S 	M) and dilation

(S ⊕M) are defined as the convolutions in R ∪ {±∞},

(S 	M)(f, t) =
∧

(ϕ,τ)∈R2

{S(f, t)−M(f − ϕ, t− τ)}

(S ⊕M)(f, t) =
∨

(ϕ,τ)∈R2

{S(f, t) +M(f − ϕ, t− τ)}

where ∧ is the min operation and ∨ the max operations

extended adequately to operate on infinite values. Ero-

sion is used to shrink or reduce objects, while dilation,

being the dual to erosion, produces an enlarging. Both

are irreversible.

Opening S ◦M and closing S •M are just the two

compositions generated by erosion and dilation with a

fixed M , called the structuring element (SE)

S ◦M = (S 	M)⊕M S •M = (S ⊕M)	M .

Note also that for fixed SE M opening (resp. closing) is

an idempotent, decreasing (resp. increasing) operator,

that is an interior (resp. closure) operator,

S ◦M ≤ S S •M ≥ S
S ◦M = (S ◦M) ◦M S •M = (S •M) •M .

Opening and closing are used to remove small objects

in images, typically noise, their behaviour with respect

to, for instance, salt and pepper noise, being dual to

each other.

4.2 Morphological filtering for discrete signals

We use S with implicit frequency band index n and

temporal frame k to represent an adequate discretiza-

tion S(n, k) of signal S(f, t). Then erosion and dilation

can be represented as matrix operations

S 	M = {p ∈ R2 | p = m− s,m ∈M, s ∈ S}
S ⊕M = {p ∈ R2 | p = s+m, s ∈ S,m ∈M}

Opening and closing adopt similar forms as matrices

as they had for operators

S ◦M = (S 	M)⊕M S •M = (S ⊕M)	M .

4.3 Discrete morphological spectro-temporal filtering

of speech

Let S be a discretized spectrogram and M a specific dis-

crete spectro-temporal masker function taken as struc-

turing element. As in [9], we use the opening operator

to try to remove the remaining noise and enhance any

component of the speech signal to obtain an empha-

sized spectrogram that is subsequently added on the

(possibly de-noised) spectrogram to produce the filtered

speech signal,

Ŝ = S + S ◦M .

Notice from an example such as that of Figure 5.(a)

the irregular shapes of the acoustic objects of the spec-

trogram (i.e. formant and harmonic modulations).

We decided to test different SEs to try to capture

such dynamics. For a first choice, the filtered spectro-

gram of Figure 5.(f) was obtained by pixel-wise adding

those versions of the spectrogram obtained by morpho-

logical filtering with the three different SEs of Figure 6,

at angles 0◦, 45◦and 90◦, resulting in Figures 5.(b), (c),

and (d), respectively. The emphasized spectrogram in

Figure 5.(f) was then obtained by normalizing this fil-

tered spectrogram and adding it to the original (de-

noised) spectrogram.

Fig. 6: Anisotropic SE: rectangles of different sizes and

angles.

Our second choice of structuring element is the sin-

gle flat anisotropic SE in Figure 7. Its design is inspired

by the masking effects of the human auditory system

(HAS) both in time and frequency (see §2, [45, 12]).

On the auditory-inspired frequency axis, the spread of

masking for simultaneous masking was modelled sym-

metricall, as in figure 1. On the time axis, however, the

masking effect is asymmetrical (see figure 3) as per the

experimental data of Section 2.3.2. Outside these well-

explored phenomena, that is in places where a mixture

of simultaneous- and temporal-masking would occur,

the behaviour was extrapolated as shown in Figure 7.

The procedure to obtain and combine the empha-

sized spectrogram with the spectrogram was the same

already explained for the first SEs.
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(a) Noisy Spectrogram + SS (Figure 4.4c)

(b) Horizontal Rectangle (c) Tilted Rectangle (d) Vertical Rectangle

(e) The addition of (b), (c) and (d)

(f) The addition of (a) and (e)

Fig. 5: Morphological filtering on the noisy spectrogram of Figure 4(b), reproduced in (a) for comparison; (b), (c)

and (d) are the result of filtering with the different anisotropic structural elements in Figure 6, while (e) is their

pixel-wise addition and (f) the emphasis (addition) of (a) with (e).

The third choice was a single non-flat improvement

on the second one: all the pixels were weighted as shown

in Figure 8, but the rest of the procedure remained the

same.
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(a) Continuous masker-inspired structural element considering
pre- and post-masking as well as the upwards and downwards
spread of simultaneous masking imposed by a certain flooring

(b) Discretization of masker

Fig. 7: Obtaining an auditorily-motivated structural el-

ement: top, the estimated effect of a masker in the hu-

man auditory system; bottom, the flat structuring ele-

ment designed to emulate that response

The first two anisotropic SEs of Figures 6 and 7 were

used in the speech enhancement task of Section 5. But

for the ASR task of Section 6 we only report on the

performance of the HAS-motivated anisotropic SEs of

Figures 7 and 8, reflecting the fact that they obtained

better results in the Speech Enhancement task.

In all cases, values below a certain threshold in the

resulting combined are replaced by a threshold value to

avoid introducing a musical noise on the filtered signal.

This models the existence of a thresholding mechanism

as seen in Section 2.3.5.

5 Application to Speech Enhancement

In this section we present the evaluation of our proposed

method, morphological filtering with different aniso-

tropic SEs (Figs. 6 and 7), on a speech enhancement

Fig. 8: Top panel shows the 2-D view of a structural

element. Bottom panel shows the 3-D view. The color

represent the weight of each pixel in the morphological

operations.

Fig. 9: Filtering proposed, step by step.

task. A block diagram of our proposed procedure can

be observed in Figure 9.

5.1 General Description

The first step is to obtain the spectrogram of the noisy

speech signal, sampled at 8 kHz. A resolution of 128

pixels (256-point FFT) is used on every spectrogram as

it was empirically determined to be appropriate for this

task. Next, a conventional SS is applied on the noisy

spectrogram and the contrast of the resulting gray-scale

image increased. The idea behind these operations is to

emphasize the speech signal over the remaining noise to
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make it easier for the subsequent morphological filtering

process. This last is performed by applying an opening

operation. Finally, the filtered signal in the time domain

is recovered using a conventional overlap-add method.

5.2 AURORA Database

The evaluation of the filtered signals with the proposal

method was conducted on the AURORA Project data-

base [20] which makes use of a speech database based

on TI digits with artificially added noise over a range

of SNR’s.

We have considered four types of noise: metro, car,

airport and restaurant noise. We employed around a

thousand speech files, individually contaminated with

additive noise at 5 different values of SNR (-5dB, 0dB,

5dB, 10dB and 15dB). A clean speech signal with added

noise (regardless of the SNR) is called in this paper

noisy signal.

5.3 Estimation of Perceptual Quality with Objective

Quality Measures

We used three objective quality measures (OQM) to

evaluate the filtered signals:

– Signal Distortion (Sig), adequate for the prediction

of the distortion on speech.

– Background Noise (Bak), for predicting background

intrusiveness.

– Overall Effect (Ovl), for predicting the overall qual-

ity.

All the OQM ([21], [22]) are evaluated using a five

point scale where 1 the worst scenario and 5 the best.

The OQM consist of linear combinations of the follow-

ing measures (Table 1):

– Perceptual Evaluation of Speech Quality (PESQ):

recommended by the ITU-T for end-to-end speech

quality assesment, the PESQ score is able to predict

subjective quality with good correlation in a very

wide range of conditions, that may include noise,

filtering, coding distortions, errors, delay and vari-

able delay [2], [38].

– Weighted-Slope Spectral Distance (WSS): computes

the weighted difference between the spectral slopes

in each frequency band. The spectral slopes are ob-

tained as the difference between spectral magnitudes

in dB [27].

– Log-Likelihood Ratio (LLR): Also referred to as the

Itakura distance, is a measure of the perceptual dif-

ference between an original spectrum (in our con-

Table 1: Weight of each measure on the Sig, Bak and

Ovl.

Measures PESQ WSS LLR segSNR Constant

Sig 0.603 -0.009 -1.029 0 3.093
Bak 0.478 -0.007 0 0.063 1.634
Ovl 0.805 -0.007 0.512 0 1.594

text, the clean speech signal) and a modified version

of that spectrum (the filtered speech signal) [37].

– Segmental Signal-to-Noise Ratio (segSNR): This frame-

based measure is formed by averaging frame level

SNR estimates [18].

5.4 Experiments and Results

In order to evaluate the performance of our method we

used the measures mentioned in section 5.3 with the

code available in [29] and considering the clean speech

signal as the reference. We have compared five differ-

ent combinations. The first one corresponds to spec-

tral subtraction (SS ) and the other four correspond to

different morphological filtering: black and white mask

with a isotropic SE (BW & iSE ), black and white mask

with anisotropic-SE (BW & aSE ), gray-scale mask with

anisotropic-SE (Gray & aSE ) and gray-scale mask with

anisotropic-SE-2 (Gray & aSE-2 ). The last two are the

proposed methods: anisotropic-SE are the rectangles

and anisotropic-SE-2 is the HAS inspired by.

Results are presented using the following relative

measure:

∆[%] = 100 · (FS −NS)

NS
(14)

in which FS is the filtered signal and NS is the noisy

one. Positive increments imply an improvement and

negative a signal degradation with respect to the noisy

signal.

Overall, similar trends have been observed for all of

the noises being the results of car and metro on the

one side and restaurant and airport on the other, very

similar. Therefore, we have chosen metro and airport

as a representative sample of them.

5.4.1 Metro Noise

Results for Metro noise and several SNRs in terms of

the relative measures with respect to the noisy signal

are shown in Figure 10.

The method with gray-scale mask and anisotropic

SE (Gray & aSE ) provides the best performance for



Auditory-inspired Morphological Processing of Speech Spectrograms 11

Fig. 10: From the top panel to the bottom panel: Rela-

tive measures for the Objective Quality Measures. Five

different methods (SS: Spectral subtraction, BW: Black

and white mask, Gray: Gray-scale mask, iSE: Isotropic

SE, aSE: Anisotropic SE). Metro Noise was used.

high SNRs in terms of Sig. The method (Gray & aSE-

2 ) is just better in low SNRs. The largest margin with

respect the other 3 methods is obtained for SNR =

−5dB.

With respect to the Bak measure, the Gray & aSE

method achieves the best performance for SNRs of−5dB,

0dB and 5dB. However, the filtering with black and

white mask and isotropic SE (BW & iSE ) reaches the

highest values of Bak for higher SNRs (10dB and 15dB).

It is worth mentioning that this OQM factors in seg-

mental SNR (see Table 1), which is known to be very

sensitive to misalignments.

Best results for the Ovl measure are obtained for

SNRs of 0dB, 5dB and 10dB when using (Gray & aSE )

filtering. For SNR = −5dB (Gray & aSE-2 ) is the best.

For SNR = 15dB the (BW & iSE ) method is slightly

better.

In summary, for the Metro noise, the proposed meth-

ods (and in general, the use of anisotropic structural

elements) provides the best performance for low and

medium SNRs (−5dB, 0dB and 5dB). For higher SNR

where the speech signal may not need to be denoised,

the filtering with black and white mask and isotropic SE

presents a similar performance in comparison to other

methods or slightly better, in terms of Bak.

5.4.2 Airport Noise

Figure 11 shows results for airport noise and several

SNRs in terms of relative Sig, Bak and Ovl measures.

First of all, it is worth mentioning that for low SNRs,

all the evaluated methods produce degradations in the

quality of the processed signals. One possible explana-

tion to this fact is the acoustic nature of the Airport

environment in which babble noise is present. Spectro-

grams of the babble noise show the typical energy dis-

tribution of speech, making more difficult the denoising

of the speech signals so contaminated.

As it can be observed, in terms of Sig and Ovl

measures, (Gray & aSE ) and (Gray & aSE-2 ) meth-

ods achieve the best performance, but the last one is

more suitable for low range of SNRs. For the Bak mea-

sure, (Gray & aSE-2 ) and (Gray & aSE ) methods pro-

vides the highest performance in low and medium SNRs

(−5dB, 0dB, 5dB and 10dB) respectively (except of

SNR = 15dB, in which both SS and (BW & iSE ) fil-

tering performs better).

6 Application to Automatic Speech

Recognition

In this section we present the evaluation of our method

in an automatic speech recognition task. In particu-

lar, we evaluate the performance of different spectro-

temporal features derived from the morphological filter-

ing of auditory-motivated spectrograms. Two different

structuring elements are considered: the anisotropic SE

aSE-2 in Figure 7 and its weighted version, aSE-3, in

Figure 8.
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Fig. 12: Block diagram of the ASR system.

Fig. 11: From the top panel to the bottom panel: Rela-

tive measures for the Objective Quality Measures. Five

different methods (SS: Spectral subtraction, BW: Black

and white mask, Gray: Gray-scale mask, iSE: Isotropic

SE, aSE: Anisotropic SE). Airport Noise was used.

6.1 General Description

The block diagram of the ASR system used in the ex-

perimentation is depicted in Figure 12. Firstly, a con-

ventional Spectral Subtraction is applied on the noisy

signal in order to emphasize as much as possible the

speech signal over the remaining noise. Next, an au-

ditory filtering is performed over this (partially) de-

noised spectrogram. Two different types of auditory fil-

terbanks are considered: a set of triangular mel-scaled

filters and a set of Gammatone filters (see subsections

2.2.1 and 2.2.3). In the next step, a morphological filter-

ing using anisotropic elements is applied. Finally, in or-

der to decorrelate the filterbank log-energies obtained in

the previous stage, a Discrete Cosine Transform (DCT)

is computed over them, yielding to Mel-Frequency Cep-

strum Coefficients (MFCC) features in the case of us-

ing the mel-scaled filterbank and to Gammatone-based

(GTC) features in the case of using the Gammatone

filterbank.

For each type of features we train and test differ-

ent MLP/HMM hybrid speech recognizers following the

ISOLET testbed as described in subsection 6.3.

6.2 Feature Extraction

As mentioned before, two types of acoustic parameters

are considered: MFCC and GTC features. In both cases,

speech is analyzed using a frame length of 25 ms and a

frame shift of 10 ms after pre-emphasis and Hamming

windowing.

MFCCs and GTCs are computed from N -channels

mel-scaled and gammatone filterbanks, respectively. Af-

ter the DCT, we take the coefficients from C0 to C12

plus the corresponding delta (∆) and acceleration (∆∆)

coefficients. Thus, both MFCC and GTC feature vec-

tors are constituted by 39 components.

In both cases, we have performed experiments con-

sidering N = {40, 80, 128} channels in the correspond-

ing filterbanks.
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6.3 ISOLET Testbed

In this application, we use the ISOLET testbed [13]

and database [6]. ISOLET is a database of letters of

the English alphabet spoken in isolation. The database

consists of 7800 spoken letters (two productions of each

letter pronounced by 150 different speakers). Specifi-

cally, we use a version called Noisy-ISOLET: the speech

signals of ISOLET plus 8 different noise types at dif-

ferent SNRs (clean, 0dB, 5dB, 10dB, 15dB y 20dB).

The noise types are: Speech babble, Factory floor noise

2, Car interior noise (volvo), Pink noise, F-16 cockpit

noise, Destroyer operations room noise, Leopard mili-

tary vehicle noise and Factory floor noise 1.

The experiments using the ISOLET testbed are per-

formed over an hybrid MLP/HMM ASR system, whose

fundamentals are described in [5]. A context of 5 frames

is used (each one of 39 components), so the input of each

MLP has 195 elements.

The hybrid MLP/HMM system is tested in two dif-

ferent conditions: in the first one, the system is trained

using clean speech (mismatched case), whereas in the

second one, the training set is composed of a balanced

combination of speech contaminated with the different

noises of the database at several SNRs (matched case).

A 5-fold cross-correlation procedure has been employed

to improve statistical significance.

6.4 Experiments with Morphological Filtering

This set of experiments was performed in order to study

the impact of the Spectral Subtraction (SS), the Au-

ditory filtering (either Mel-filterbank or Gammatone-

filterbank) and the Morphological Filtering (MF) on

the performance of the whole system. 40 bands have

been employed in the auditory filterbank and the aSE-

2 anisotropic structuring element. Recognition results

together with their corresponding 95% confidence in-

tervals are shown in Table 2.

As can be observed, similar conclusions can be drawn

from the results with MFCC and GTC features. First,

in the mismatched condition, whereas SS clearly out-

performs the corresponding baselines being the per-

formance differences statistically significant, MF alone

produces a slightly increment of the WERs. Neverthe-

less, the sequential use of both techniques (SS + MF)

improves the performance of the system compared to

the baseline and SS cases. In particular, the improve-

ment achieved by SS + MF with respect to SS is statis-

tically significant for the MFCC parameterization. For

the matched condition, no significant improvements are

achieved by using SS, MF or SS + MF and therefore our

method seems to be more suitable for the mismatched

Table 2: Recognition results in terms of WER [%] The

number of bands in these experiments was fixed to

40 (MFCC: Mel-frequency cepstral coefficients, GTC:

Gammatone-based coefficients, SS: Spectral Subtrac-

tion, MF: Morphological Filtering).

Features Mismatched Matched

MFCC 51.80 ± 1.24 16.45 ± 0.92
MFCC + SS 40.85 ± 1.22 16.95 ± 0.93
MFCC + MF 54.03 ± 1.24 17.03 ± 0.93
MFCC + SS + MF 37.03 ± 1.20 17.05 ± 0.93

GTC 53.78 ± 1.24 17.15 ± 0.94
GTC + SS 40.28 ± 1.22 16.95 ± 0.93
GTC + MF 56.95 ± 1.23 17.43 ± 0.94
GTC + SS + MF 38.50 ± 1.21 16.85 ± 0.93

case. It is worth pointing out that the matched case is

harder to improve that the mismatched one, because

higher speech recognition rates are achieved without

any processing.

With respect to the auditory filterbank considered,

MFCC achieves better results than GTC in all cases.

However, the performance differences are not statisti-

cally significant.

Figure 13 shows the Recognition Rates achieved by

the different techniques indicated in Table 2 as a func-

tion of the noise type for the mismatched condition. It

can be observed that our method (bars 4 and 8) out-

performs SS (bars 2 and 6) in all noise types for the

MFCC parameterization and in 5 of the 7 noise types

for the GTC parameterization. In this latter case, our

method is only slightly worse for the babble and fac-

tory2 noises.

6.5 Experiments with different number of bands and

structuring elements

As MF is applied on the output of the Auditory Filter-

bank analysis (in contrast to the speech enhancement

task, in which MF is applied directly on the speech

spectrogram), we carried out a set of experiments in

order to analyse the influence of the number of fre-

quency bands on the performance of the whole system.

Note that there is a relationship between the number of

bands and the size of the structuring element. Besides,

we compared two structuring elements: the flat aSE-2

and its nonflat version aSE-3.

Table 3 contains the corresponding WERs as well

as the confidence intervals calculated for a confidence

of 95%. For the mismatched condition, the behaviour of

MFCC and GTC are different with respect to the num-

ber of bands. In GTC, the results slightly improve as
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Fig. 13: Speech Recognition Rate [%] vs. Noise Types. Mismatched Case.

the number of bands increases for both structuring ele-

ments, although the differences are rather small. How-

ever, in MFCC, the best results are achieved with 128

bands and 80 bands, for aSE-2 and aSE-3, respectively.

This observation suggests that MFCC are more sensible

to the size and shape of the structuring element.

In the other hand, for the matched condition, we

obtain better recognition rates in all the cases with the

nonflat SE. However, this condition seems to be sensi-

tive to the number of bands. This result suggests the

convenience of exploring new HAS-motivated nonflat

SE taking into account the non-uniform masking effect

explained in subsection 2.3.

7 Conclusions and future work

In this paper we have explored an alternative to the

morphological filtering for speech enhancement and noise

compensation proposed in [9] introducing elements of

the HAS. In particular, we have proposed the use of

morphological filtering with auditory-inspired anisotropic

structural elements applied over gray-scale spectrograms.

These ideas have been further extended to feature ex-

traction for ASR.

On the one hand, for speech enhancement, results

demonstrate that the proposed methods (using the aniso-

tropic elements aSE and aSE-2 ) provide a better per-

formance than the other alternatives for the SNR’s of

-5dB, 0dB and 5dB, a very important range of SNR’s

for speech enhancement. Besides, the proposed meth-

ods seem to be more suitable for non-stationary noise.

However, subjective measures of the different alterna-

tives could also shed more light into the evaluation pro-

cedure given that the objective estimates that we have

employed in this paper have several limitations.

On the other hand, for automatic speech recogni-

tion, the combination of spectral subtraction and mor-

phological filtering improves the recognition rates, re-

gardless of the use of Mel or Gammatone filterbanks.

Moreover, we think that there is more room for im-

provement in the morphological filtering stage. In par-

ticular, the incorporation of an automatic gain con-

trol (AGC) [30, 31] to Gammatone-filterbank features

should be explored for ASR tasks. Other future lines of

work include the use of other types of auditory filters,

like those proposed in [23, 24] and alternative shapes

for the anisotropic structural elements trying to more

precisely emulate the masking effects (in time and fre-

quency) of the human ear. The experimentation on real

noisy signals instead of the artificially distorted ones

employed in this paper is also desirable.
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