100 research outputs found

    Urban land cover change detection analysis and modeling spatio-temporal Growth dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Dhaka, the capital of Bangladesh, has undergone radical changes in its physical form, not only in its vast territorial expansion, but also through internal physical transformations over the last decades. In the process of urbanization, the physical characteristic of Dhaka is gradually changing as open spaces have been transformed into building areas, low land and water bodies into reclaimed builtup lands etc. This new urban fabric should be analyzed to understand the changes that have led to its creation. The primary objective of this research is to predict and analyze the future urban growth of Dhaka City. Another objective is to quantify and investigate the characteristics of urban land cover changes (1989-2009) using the Landsat satellite images of 1989, 1999 and 2009. Dhaka City Corporation (DCC) and its surrounding impact areas have been selected as the study area. A fisher supervised classification method has been applied to prepare the base maps with five land cover classes. To observe the change detection, different spatial metrics have been used for quantitative analysis. Moreover, some postclassification change detection techniques have also been implemented. Then it is found that the ‘builtup area’ land cover type is increasing in high rate over the years. The major contributors to this change are ‘fallow land’ and ‘water body’ land cover types. In the next stage, three different models have been implemented to simulate the land cover map of Dhaka city of 2009. These are named as ‘Stochastic Markov (St_Markov)’ Model, ‘Cellular Automata Markov (CA_Markov)’ Model and ‘Multi Layer Perceptron Markov (MLP_Markov)’ Model. Then the best-fitted model has been selected based on various Kappa statistics values and also by implementing other model validation techniques. This is how the ‘Multi Layer Perceptron Markov (MLP_Markov)’ Model has been qualified as the most suitable model for this research. Later, using the MLP_Markov model, the land cover map of 2019 has been predicted. The MLP_Markov model shows that 58% of the total study area will be converted into builtup area cover type in 2019. The interpretation of depicting the future scenario in quantitative accounts, as demonstrated in this research, will be of great value to the urban planners and decision makers, for the future planning of modern Dhaka City

    Defying Genocide in Myanmar: Everyday Resistance Narratives of Rohingyas

    Get PDF
    Rohingyas are the most persecuted minority in the world. They have been facing systematic discrimination and serious human rights violations since the 1970s when they stopped being recognized as citizens by the Burmese government. Acts committed against this predominantly Muslim minority in the Rakhine State can be classified as ethnic cleansing with the intent of genocide. Myanmar is also facing a case in the International Court of Justice (ICJ) due to violations of the Convention Against Genocide (1948). This paper employs the framework of everyday resistance to highlight Rohingyas’ acts and practices to resist genocidal acts in Myanmar. We analyzed 62, 56, and 145 micronarratives of forcibly displaced adult Rohingyas currently living in India, Malaysia, and Bangladesh, collected between March 2019 and April 2020. We conclude that the Rohingyas adopted various everyday resistance practices involving non-compliance, such as refusing to follow orders, giving money or going to forced labour; and avoiding staying at home and secrecy, including praying, using mobile phones, moving to other areas, studying, and marrying secretly. In addition, everyday resistance strategies connected to gender-focused protection against sexual violence were linked to staying at home, hiding girls and maintaining women pregnant. Finally, Rohingyas adopted resistance strategies to survive the 2017 attacks, including fleeing to Bangladesh in groups and supporting each other. This discussion dialogues with previous work on genocide studies that highlight the agency and resistance of Holocaust and other genocide survivors. It contributes to understanding the everyday resistance of a stateless minority, recognizing its agency against its genocidal state

    Assessing the effectiveness of landslide slope stability by analysing structural mitigation measures and community risk perception

    Get PDF
    Rainfall-induced landslides seriously threaten hilly environments, leading local authorities to implement various mitigation measures to decrease disaster risk. However, there is a significant gap in the current literature regarding evaluating their effectiveness and the associated community risk perception. To address this gap, we used an interdisciplinary and innovative approach to analyse the slope stability of landslides, evaluate the effectiveness of existing structural mitigation measures, and assess the risk perception of those living in danger zones. Our case study focused on the Kutupalong Rohingya Camp (KRC) in Cox’s Bazar, Bangladesh, which is home to over one million Rohingya refugees from Myanmar. Although various structural and non-structural countermeasures were implemented in the KRC to mitigate the impact of landslides, many of them failed to prevent landslides from occurring. We utilised a variety of methods from the physical sciences, including the infinite slope, limit equilibrium (LEM), and finite element (FEM) approaches, to calculate the factor of safety (FoS) for specific slopes. Additionally, in the social sciences domain, we conducted a questionnaire survey of approximately 400 Rohingya participants to assess the community’s perception of the interventions and the degree of disaster risk. Our findings indicated that slopes with a gradient greater than 40° were unstable (FoS < 1), which was present throughout the entire KRC area. The effectiveness of the LEM and FEM methods was evaluated for four dominant slope angles (40°, 45°, 50°, and 55°) under varying loads (0, 50, and 100 kN/m2). The slopes were found to be stable for lower slope angles but unstable for higher slope angles (> 50°) and increased overburden loads (50–100 kN/m2). Different mitigation measures were tested on the identified unstable slopes to assess their effectiveness, but the results showed that the countermeasures only provided marginal protection against landslides. Survey results revealed that at least 70% of respondents believed that concrete retaining walls are more effective in reducing landslide occurrence compared to other measures. Additionally, about 60% of the respondents questioned the reliability of the existing structural mitigation measures. The study also found that the cohesion and friction angle of lower sandstone and the cohesion of upper soil layers are important factors to consider when designing and implementing slope protection countermeasures in the KRC area

    Enhancing Landslide Susceptibility Modelling Through a Novel Non-landslide Sampling Method and Ensemble Learning Technique

    Get PDF
    In recent years, several catastrophic landslide events have been observed throughout the globe, threatening to lives and infrastructures. To minimize the impact of landslides, the need of landslide susceptibility map is important. The study aims to extract high-quality non-landslide samples and improve the accuracy of landslide susceptibility modelling (LSM) outcomes by applying a coupled method of ensemble learning and Machine Learning (ML). The Zigui-Badong section of the Three Gorges Reservoir area (TGRA) in China was considered in the present study. Twelve influencing factors were selected as inputs for LSM, and the relationship between each causal factor and landslide spatial development was quantitatively analyzed. A total of 179 landslides have been used in the present study. About 70% of the landslide pixels were randomly considered for training, and the remaining 30% were used for validation. Logistic Regression (LR) model was applied to produce an initial susceptibility map, and the non-landslide samples were selected within the classified low-susceptibility zone. Subsequently, two ML classifiers – the Classification and Regression Tree (CART), and the Multi-Layer Perceptron (MLP), and four coupling models – the CART-Bagging, CART-Boosting, MLP-Bagging, and MLP-Boosting, were utilized for LSM. Finally, the receiver operating characteristics (ROC) curve and statistical analysis were applied for accuracy assessment. The results show that altitude and distance to rivers were the main causal factors of landslides in the study area. The LR-MLP-Boosting performed the best with an accuracy of 0.986 followed by the LR-CART-Bagging, LR-CART-Boosting, and LR-MLP-Bagging. Accuracy comparisons demonstrate that ensemble learning algorithm can notably enhance the LSM performance of ML classifiers, and the Boosting algorithm marginally outperforms the Bagging algorithm. Moreover, the LR model can effectively constrain the selection range of non-landslide samples. The non-landslide sampling method constrained by LR yields higher quality samples compared to raditional random sampling method with no constraints, which develops a more excellent LSM

    Improving spatial agreement in machine learning-based landslide susceptibility mapping

    Get PDF
    Despite yielding considerable degrees of accuracy in landslide predictions, the outcomes of different landslide susceptibility models are prone to spatial disagreement; and therefore, uncertainties. Uncertainties in the results of various landslide susceptibility models create challenges in selecting the most suitable method to manage this complex natural phenomenon. This study aimed to propose an approach to reduce uncertainties in landslide prediction, diagnosing spatial agreement in machine learning-based landslide susceptibility maps. It first developed landslide susceptibility maps of Cox’s Bazar district of Bangladesh, applying four machine learning algorithms: K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM), featuring hyperparameter optimization of 12 landslide conditioning factors. The results of all the four models yielded very high prediction accuracy, with the area under the curve (AUC) values range between 0.93 to 0.96. The assessment of spatial agreement of landslide predictions showed that the pixel-wise correlation coefficients of landslide probability between various models range from 0.69 to 0.85, indicating the uncertainty in predicted landslides by various models, despite their considerable prediction accuracy. The uncertainty was addressed by establishing a Logistic Regression (LR) model, incorporating the binary landslide inventory data as the dependent variable and the results of the four landslide susceptibility models as independent variables. The outcomes indicated that the RF model had the highest influence in predicting the observed landslide locations, followed by the MLP, SVM, and KNN models. Finally, a combined landslide susceptibility map was developed by integrating the results of the four machine learning-based landslide predictions. The combined map resulted in better spatial agreement (correlation coefficients range between 0.88 and 0.92) and greater prediction accuracy (0.97) compared to the individual models. The modelling approach followed in this study would be useful in minimizing uncertainties of various methods and improving landslide predictions

    The 2017 Rohingya Influx into Bangladesh and Its Implications for the Host Communities

    Get PDF
    We addressed the research question, how does the host community perceive the effects of Rohingya influx to Bangladesh, from their perspectives using a questionnaire survey, key informant interviews, and focus group discussions. Bangladesh sheltered over a million Rohingyas, fleeing genocide and serious crimes against humanity, on humanitarian grounds. The local people welcomed them and offered direct support and assistance. Our findings suggest that their immediate sympathy for Rohingyas faded over time due to various factors. An overwhelming majority perceived the Rohingyas as pressure on their land and resources and being deprived on numerous grounds outweighed the disproportionate economic incentives of the influx. The findings offer fresh insights into the challenges of hosting refugees in the local communities because of the diverse impacts of forced displacemen

    Restoring Degraded Landscapes through An Integrated Approach Using Geospatial Technologies in the Context of the Humanitarian Crisis in Cox’s Bazar, Bangladesh

    Get PDF
    The influx of nearly a million refugees from Myanmar's Rakhine state to Cox's Bazar, Bangladesh, in August 2017 put significant pressure on the regional landscape leading to land degradation due to biomass removal to provide shelter and fuel energy and posed critical challenges for both host and displaced population. This article emphasizes geospatial applications at different stages of addressing land degradation in Cox’s Bazar. A wide range of data and methods were used to delineate land tenure, estimate wood fuel demand and supply, assess land degradation, evaluate land restoration suitability, and monitor restoration activities. The quantitative and spatially explicit information from these geospatial assessments integrated with the technical guidelines for sustainable land management and an adaptive management strategy was critical in enabling a collaborative, multi-disciplinary and evidence-based approach to successfully restoring degraded landscapes in a displacement setting

    Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria

    Get PDF
    Rainfall induced landslides are a common threat to the communities living on dangerous hill-slopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence (WoE) method was applied to calculate the positive (presence of landslides) and negative (absence of landslides) factor weights. A combination of analytical hierarchical process (AHP) and fuzzy membership standardization (weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren’s algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of WoE, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes
    corecore