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ABSTRACT 
In recent years, several catastrophic landslide events have been 
observed throughout the globe, threatening to lives and infra
structures. To minimize the impact of landslides, the need of land
slide susceptibility map is important. The study aims to extract 
high-quality non-landslide samples and improve the accuracy of 
landslide susceptibility modelling (LSM) outcomes by applying a 
coupled method of ensemble learning and Machine Learning 
(ML). The Zigui-Badong section of the Three Gorges Reservoir 
area (TGRA) in China was considered in the present study. Twelve 
influencing factors were selected as inputs for LSM, and the rela
tionship between each causal factor and landslide spatial devel
opment was quantitatively analyzed. A total of 179 landslides 
have been used in the present study. About 70% of the landslide 
pixels were randomly considered for training, and the remaining 
30% were used for validation. Logistic Regression (LR) model was 
applied to produce an initial susceptibility map, and the non-land
slide samples were selected within the classified low-susceptibility 
zone. Subsequently, two ML classifiers – the Classification and 
Regression Tree (CART), and the Multi-Layer Perceptron (MLP), 
and four coupling models – the CART-Bagging, CART-Boosting, 
MLP-Bagging, and MLP-Boosting, were utilized for LSM. Finally, 
the receiver operating characteristics (ROC) curve and statistical 
analysis were applied for accuracy assessment. The results show 
that altitude and distance to rivers were the main causal factors 
of landslides in the study area. The LR-MLP-Boosting performed 
the best with an accuracy of 0.986 followed by the LR-CART- 
Bagging, LR-CART-Boosting, and LR-MLP-Bagging. Accuracy com
parisons demonstrate that ensemble learning algorithm can   
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notably enhance the LSM performance of ML classifiers, and the 
Boosting algorithm marginally outperforms the Bagging algo
rithm. Moreover, the LR model can effectively constrain the selec
tion range of non-landslide samples. The non-landslide sampling 
method constrained by LR yields higher quality samples com
pared to raditional random sampling method with no constraints, 
which develops a more excellent LSM.

1. Introduction

Landslides are severe, sudden, and frequent geological disasters that occur throughout the 
globe, taking huge loss of life, and infrastructures that affect the day-to-day life. The 
Ministry of Natural Resources of China reported that 4,810 landslide disasters occurred in 
2020, resulting in 139 deaths and 730 million US dollars in direct economic losses. The 
Three Gorges Reservoir area (TGRA) is a highly landslide-prone area, with more than 
5,000 landslide occurrences recorded (Zhou et al. 2022a). During the first impoundment 
of the TGRA in July 2003, the Qianjiangping landslide caused a death toll of 24 and an 
economic loss of about 11.6 million US dollars. Landslide risk assessment has been widely 
used as a vital means of disaster prevention and mitigation. It is the foundation for quan
titative risk assessment and the final land use and planning maps. However, due to the 
nonlinear relationship between landslide occurrence and their influencing factors, accurate 
landslide susceptibility modelling (LSM) is challenging for geoscientists and engineers.

Over the past two decades, numerous qualitative and quantitative methods have been 
developed for LSM (Sabokbar et al. 2014; Zhou et al. 2018; Yavuz Ozalp et al. 2023; Liu 
et al. 2024). In the qualitative methods, the weight of various controlling factors is deter
mined by engineering geologists and geotechnical engineers based on their past experien
ces. These methods require landslide-vulnerable areas based on past landslide events, 
geology, and slope. The qualitative methods include expert scoring and analytic hierarchy 
methods based on numerous controlling landslide parameters (Meena et al. 2022; Roy 
et al. 2023). The quantitative method is divided based on data-driven and physically 
driven. The advancement of earth observation techniques has markedly enhanced data 
quality, particularly in landslide catalogues and topographic landforms. This improvement 
has propelled the widespread adoption of data-driven methods in LSM. The Machine 
Learning (ML) technique has a strong nonlinear fitting ability that are being used in vari
ous fields including LSM (Zhou et al. 2020a; 2016; Yavuz Ozalp et al. 2023). The popular 
ML methods include support vector machines, artificial neural networks, random forest, 
extreme gradient Boosting, CatBoost (Yu et al. 2022; Zhou et al. 2022b; Yavuz Ozalp 
et al. 2023; Liu et al. 2024).

Machine learning methods are reported to surpass traditional approaches in LSM stud
ies. Contemporary studies additionally indicate that a sole machine learning classifier fre
quently encounters challenges in achieving optimal performance within the context of 
LSM (Akinci and Zeybek, 2021; Long et al. 2021; Tanyu et al. 2021). Users of models 
may lack familiarity with the historical performance of an individual machine learning 
classifier, posing a challenge in assessing whether a modelling method adequately supports 
specific susceptibility assessments (Hu et al. 2021). This increases the possibility of 
inappropriate model selection. Ensemble learning techniques address the limitations of 
individual classifiers by combining the predictions of multiple classifiers, resulting in 
more robust and accurate predictions. This approach has gained widespread attention 
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across various fields (Mohammed and Kora, 2023). Recently, ensemble learning has also 
gained popularity in LSM with impressive research results (Sharma et al. 2024). Song 
et al. (2020) introduced a stacking ensemble learning framework consisting of multiple 
tree-based classifiers as base learners and logistic regression as a meta-learner in a two- 
layer structure. Hong (2023a) applied best-first decision tree as the base classifier and 
explored the effect of coupling with five ensemble algorithms in LSM. However, there is 
no consensus on the applicability of ensemble machine learning in LSM. To date, most of 
the base classifiers for ensemble learning are tree-based algorithms, and less attention is 
paid to the performance of ensemble models derived from MLP as the base classifier 
(Hong, 2023b). Many studies concentrate on comparing the prediction accuracy of 
ensemble algorithms with single models and among different ensemble learning methods. 
Few studies focus on the impact of key parameters on ensemble learning modelling per
formance, such as the relationship between the number of base classifiers and LSM 
accuracy.

The selection of high-quality training samples is also crucial for enhancing LSM. At 
the regional scale, the non-landslide area is much larger than the landslide area, even if 
landslides are extremely developed. How to conduct high-quality non-landslide sampling 
in landslide-free areas is a focus of LSM research (Zhu et al. 2019; Hong et al. 2024). The 
most used method currently is to randomly sample non-landslide pixels from the whole 
landslide-free areas with no constraint. The selected non-landslide samples may exhibit 
similarities to the geo-environmental context of the landslide occurrence area, adversely 
impacting the accuracy of susceptibility modelling. The buffer-controlled (Gameiro et al. 
2021; Lucchese et al. 2021) and slope-controlled (Kavzoglu et al. 2014) methods enable 
the acquisition of high-quality non-landslide samples. However, various conditions, such 
as low slope-gradient and hard rock properties, can serve as controlling factors against 
landslides. This kind of method employs simple rules for non-landslide sampling and is 
not able to fully capture the non-landslide development pattern across the entire study 
area. Acquiring high-quality non-landslide samples that encompass various control pat
terns remains a pressing issue to be addressed for a better LSM.

The Zigui-Badong section which is located at the head area of the TGRA is considered 
for the detailed LSM study (Figure 1). Over the past two decades, the combination of pre
cipitation and periodic water level fluctuations in the reservoir has led to significant num
ber of landslides. In this study, twelve controlling landslide factors are statistically 
analyzed and selected as inputs for modelling. An initial landslide susceptibility map is 
produced using Logical Regression (LR), and the non-landslide training samples are 
selected in the low susceptibility area. Two single models, namely Classification and 
Regression Tree (CART), Multi-Layer Perceptron (MLP), and four coupling models 
(CART-Bagging, CART-Boosting, MLP-Bagging, and MLP-Boosting) were utilized for 
LSM. Finally, the modelling performance is compared by Receiver Operating 
Characteristic (ROC) Curve and statistical analysis method. Our results attempt to 
develop a high-accurate susceptibility model for reservoir landslides in the TGRA.

2. Study area

The study area is located within Zigui and Badong counties, (latitude 30�510–31�40 N, and 
longitude 100�170–100�520 E) with the total area about 656 km2 (Figure 1). It is a high- 
prone area for landslide disasters with an altitude range of 80–2,020 m. The geological 
structure in the study area is complex, with developed faults and fragmented rock mass. 
Triassic and Jurassic dominate the stratum, and the lithology is mostly carbonate, sand 
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shale, marlstone, and mudstone, which is sensitive to landslide occurrence. Quaternary is 
widely exposed in the study area and accumulates on the terraces and slope surfaces. 
In addition, the study area experiences excessive rainfall, with an average annual rainfall 
of 1,250 mm, mainly during May to September. In 2003, the TGRA was first impounded 
up to 135 m. After September 2008, the reservoir water level periodically varies between 
145 m − 175 m per year, significantly changing the bank slope’s hydrogeological conditions 
(Cao et al. 2016; Zhou et al. 2020b). The water level fluctuations induce the deformation 
and trigger a large number of reservoir landslides, such as the Qianjiangping landslide, 
the Muyubao landslide, and the Shuping landslide.

3. Methodology

3.1. Developing LSM

The development of LSM includes four parts (Figure 2): influencing factor selection and 
landslide pixel sampling, non-landslide pixel sampling, model construction, and accuracy 
evaluation. First, we have considered the influencing factors for LSM; 70% of the landslide 
pixels were selected as the training data, while the remaining 30% was applied for valid
ation. Second, we produce a preliminary susceptibility map using LR and non-landslide 
pixels with an equal number of landslide pixels are randomly selected from the low 

Figure 1. (a) Map of China, (b) map shows Three gorges reservoir area, and (c) topography and landslide distribution 
in the study area. The background maps are made using ArcGIS.
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susceptibility area. Third, two single classifiers (CART and MLP) and four coupling mod
els (CART-Bagging, CART-Boosting, MLP-Bagging, and MLP-Boosting,) are applied for 
LSM. Finally, we use statistical analysis method and ROC curves to evaluate the partition
ing results and model performance.

Figure 2. The flowchart of the landslide susceptibility mapping in this study.

GEOCARTO INTERNATIONAL 5



3.2. Information value method

Information value is a statistical method based on information theory. In this study, we 
apply this method to quantitatively assess the influence of various factors on landslide 
occurrence. In LSM, the information value is given as follows:

Ii ¼
Xn

i¼1
Ln

Si=S
Ai=A

(1) 

where Ii is the information value of the i-th influencing factor; Si is the number of land
slide pixels within the i-th influencing factor; S is the total number of landslide pixels; Ai 
is the number of pixels for the i-th influencing factor; A is the total number of pixels in 
the study area; n is the number of influencing factors (Zhou et al. 2018). When the infor
mation value is greater than 0, the factor promotes the occurrence of landslides. 
Conversely, when the value is less than 0, that indicates the factor inhibits the occurrence 
of landslides. Moreover, the larger the absolute information value, the stronger the effect.

3.3. Classifier

3.3.1. Multi-Layer Perceptron
Multi-Layer Perceptron (MLP) is a feed-forward artificial neural network widely used in 
many fields. It consists of three layers: input layer, hidden layer, and output layer 
(Figure 3). MLP with a sufficient number of hidden layer neurons can realize any nonlin
ear mapping from n-dimensional to m-dimensional (Gardner and Dorling 1998). During 
the calculation process, the input layer neurons receive sample data, and the hidden layer 
and the output layer neurons deal with the inputs according to the weight value. To build 
a better model, MPL modifies the weight value through backpropagation. The learning 
process of MPL models is constantly adjusting the parameters, and the training of the 
MPL model is the process of constantly adjusting network parameters.

3.3.2. Classification and Regression Tree
Classification and Regression Tree (CART) is a simple but powerful approach to forecast
ing an event. This method is easy to understand and implement for LSM. During model
ling, CART does not need to presuppose a relationship between the predictor and target 
variables. The child nodes are obtained to form a binary tree by recursively dividing the 
data set. The child nodes are continuously expanded to generate a complete decision tree 

Figure 3. MLP neural network structure.
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and perform the necessary pruning to prevent overfitting. The Gini index minimization 
criterion determines the optimal segmentation point, and the smaller the Gini index is, 
the better the effect of tree division. The Gini index represents the classification error rate 
for the binary classification problem. For example, if the sample set D contains k catego
ries, the Gini coefficient of the sample set can be expressed as:

Gini Dð Þ ¼ 1 −
Xk

i¼1

Ci

D

� �2

(2) 

where Ci is a subset of class i samples in D.

3.3.3. Logical regression
The logical regression (LR) model is a statistical analysis model suitable for binomial cat
egorical dependent variables and is widely used in landslide and subsidence prediction 
(Youssef et al. 2016; Hu et al. 2021). Training testing on known landslide events estab
lishes the nonlinear relationship between the dependent variable and multiple independ
ent variables. Therefore, the occurrence probability of future landslides can be predicted 
or evaluated using the established formula. The method considers the landslide influenc
ing factor as the independent variable and the occurrence probability of landslides as the 
dependent variable (landslide is 1, the non-landslide is 0). The independent variable can 
be continuous or discrete. Assuming that the probability of landslide occurrence is P, the 
regression equation can be written as follows:

P ¼
1

1 þ e−ðb0þb1x1þb2x2þ...þbnxnÞ
(3) 

where b0 is a constant, n is the number of independent variables, x1, x2, … , xn is the land
slide influencing factors, and b1, b2, … , bn are the coefficients of LR.

3.4. Ensemble learning

3.4.1. Boosting
Boosting algorithm is a process of enhancing a simple weak classification algorithm to 
reduce variance and bias through iterative training to improve the ability to classify model 
data (Youssef et al. 2016). This algorithm generates a classifier combination through mul
tiple iterations. Each iteration constructs a new training set from a sample returned to the 
total dataset, and each iteration adjusts the weight of the sample to get higher weight val
ues at the next iteration. After T iterations, the updated weak classifiers are weighted and 
superimposed to obtain the strong classifier (Figure 4).

3.4.2. Bagging
The Bagging algorithms an ensemble learning technique aimed at improving the stability 
and accuracy of machine learning models. Its main idea is to repeat the input training 
sets by Bootstrap sampling to obtain n subsets and build a weak classifier for each subset. 
The voting method integrates the weak (n) classifiers to form a strong classifier. The 
Bagging algorithm can observe small changes in the training data, effectively improving 
the accuracy and stability of the model prediction results, especially for models susceptible 
to sample disturbances (Figure 5).
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4. Modelling and results

4.1. Data used

Accurate and reliable landslide inventory data are essential for LSM, here we prepared the 
landslide inventory using field data, historical landslide inventory, and high-resolution 
remote sensing images. The data source of this study includes: (a) a topographic map 
(1:10,000) for extraction of topography, landscape, and rivers; (b) a geological map 
(1:50,000) for extraction of lithology, geologic structure, faults, and so on; (c) field investi
gation data; and (d) the historical landslide inventory. A total of 179 landslides with a 
total area of 22.14 km2 are obtained in the study area, shown as dots or bands along the 
Yangtze River (Figure 1). In contrast, the area of individual landslides ranges from 
0.13 km2 to 1.80 km2, with four typical reservoir landslides of Baijiabao, Shuping, 
Bazimen, and Muyubao landslides (Figure 6).

4.2. Analysis of influencing factors

Different influencing factors cause landslide occurrence in various regions due to the 
diverse geological environments. With the consideration of the regional geological condi
tions, landslide inventory, and earlier studies (Yu et al. 2019), 12 influencing factors were 
prepared initially for LSM, namely altitude, slope, aspect, terrain roughness index (TRI), 
topographic relief, slope geometry, slope structure, lithology, topographic wetness index 

Figure 4. Schematic diagram of Boosting ensemble algorithm.

Figure 5. Flowchart of the Bagging ensemble algorithm.
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(TWI), landuse, distance to rivers, and distance to faults. According to the Technical 
requirement for the geo-hazard survey (1:50,000) of China Geological Survey, the raster 
of 30 m � 30 m is adopted as the basic unit for LSM. All layers of twelve influencing fac
tors are extracted in ArcGIS 10.2.

4.2.1. Altitude
In the study area, there are many new infrastructures are developed, such as roads, 
bridges, electric lines, telephone lines etc. at low altitudes severely affecting the stability of 
natural slopes. The altitude of the study area varies from 145 to 2,020 m, which is divided 
into five classes: (145 � 240), (240 � 450), (450 � 650), (650 � 1200), (1200 � 2020) 
(Figure 7a). As given in Table 1, landslides mainly occur in the altitude range of 
145 � 240 m, the information value of which is the highest of 1.49. No landslides occur in 
regions above an altitude of 1200 m, since the slopes are observed to remain undisturbed.

4.2.2. Slope
The slope affects the stress distribution, materials accumulation, and surface runoff. It can 
be divided into five classes: very gentle (0�, 9�), gentle (9�, 18�), moderate (18�, 27�), steep 
(27�, 36�), and very steep (36�, 90�) (Figure 7(b)). Landslides generally occur on the gen
tle slope, whose information value is 0.42. When the slope is more than 36�, the occur
rence of a landslide is significantly inhibited, and the information value is the lowest 
of −1.63.

4.2.3. Aspect
Rainfall and sunlight exposure vary according to the aspect, leading to contrasting differ
ences in the physical and mechanical properties of sliding masses. These differences may 
arise from the weathering impacts, ultimately affecting the stability of landslides (Pham 
et al. 2021). The aspect in this study was divided into nine classes. The slopes with north 

Figure 6. Reservoir landslides in the Three Gorges reservoir area (Figure 1): (a) Baijiabao landslide, (b) Shuping land
slide, (c) Bazimen landslide, and (d) Muyubao landslide.
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Figure 7. Shows various landslide factors: (a) altitude, (b) slope, (c) aspect, (d) TRI, (e) topographic relief, (f) slope 
geometry, (g) slope structure, (h) landuse, (I) lithology, (j) TWI, (k) distance to rivers, and (l) distance to faults.
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and northeast aspects are more prone to landslides, their information values are 0.47 and 
0.23, respectively (Figure 7(c)).

4.2.4. Topographic relief
The relative height difference in the study area is computed using following equation:

D ¼ Hmax − Hmin (4) 

where, D is the relief factor; Hmax is the highest altitude value; Hmin is the lowest alti
tude value. The topographic relief in this study is divided into five classes: (0 � 14 m), 
(14 � 35 m), (35 � 42 m), � 49 m (Figure 7(d)). The information values are −0.63, 0.47, 
0.08, −0.47 and −1.70, respectively.

4.2.5. Slope geometry
Slope curvature is the microscopic performance of the earth’s surface landforms, divided 
into plane curvature and profile curvature. It reflects the concavity of the slope along the 
aspect, which controls the flow speed of surface material and rainfall confluence. We clas
sify the plane and profile curvatures into three classes respectively. The nine slope 

Table 1. Statistics between causal factors and landslides occurrence.

Causal factor Category IV Causal factor Category IV

Slope (�) 0 � 9 −0.90 Aspect flat −1.93
9 � 18 0.37 north 0.47

18 � 27 0.42 northeast 0.23
27 � 36 −0.28 east −0.27

>36 −1.63 southeast −0.31
TRI 1 � 1.1 0.37 south 0.43

1.1 � 1.2 −0.04 southwest −0.29
1.2 � 1.3 −0.88 west −0.71
1.3 � 1.4 −1.9 northwest −0.03
1.4 � 1.5 −2.48 Distance to faults (m) 0–500 −0.04

>1.5 −2.49 500–1,000 0.08
Distance to rivers (m) 0 � 300 0.92 1,000–1,500 0.24

300 � 600 0.29 1,500–2,000 0.23
600 � 900 −0.57 >2,000 −0.22

900 � 1,200 −1.7 Altitude (m) <240 1.49
>1,200 −2.95 240–450 0.54

Lithology L1 −3.94 450–650 −1.36
L2 −0.3 650–1,200 −3.84
L3 0.17 >1,200 −1
L4 −0.34 Slope geometry X/X 0.16
L5 0.42 X/V −0.96

TWI 1.37 � 3 −2.49 X/GE −1.45
3 � 4.5 −0.37 V/X 0.04
4.5 � 6 −0.20 V/V −1.74
6 � 7.5 0.47 V/GE −1.19
7.5 � 9 0.72 GR/X 0.01

>9 0.02 GR/V −1.02
Topographic relief (m) 0-14 −0.63 GR/GE −1.46

14-35 0.47 Slope structure B1 −1

35-42 0.08 B2 0.14
42-49 −0.47 B4 0.13
>49 −1.70 B5 0.08

Landuse Mountain land −0.59 B6 −0.17
Farmland 0.12 B7 −0.34

Waterbody 0.43 B8 −0.67
Construction land 0.85

Note: IV refers to Information Value; The meaning of the lithology, slope structure, and slope type abbreviation of 
the formation is given in Tables 2, 3 and 4.
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geometries are defined with the combination of plane and profile curvatures (Table 2, 
Figure 7e). In this study area, landslides mainly occur in the slope type of X/X, with the 
highest information value of 0.16.

4.2.6. Terrain roughness index
The terrain roughness index (TRI) reflects the degree of surface fluctuation and erosion, 
which is computed using the following equation:

TRI ¼ �Absðmax2 − min2Þ (5) 

The TRI is divided into six classes: (1 � 1.1), (1.1 � 1.2), (1.2 � 1.3), (1.3 � 1.4), 
(1.4 � 1.5), and �1.5 (Figure 7(f)). The information values are 0.37, −0.04, −0.88, −1.90, 
−2.48, and −2.49, respectively (Table 1).

4.2.6. Landuse
Landuse and landslide development are closely related to the triggering of landslides due 
to the changes in the slope. The landuse is divided into four categories, namely water 
bodies, construction land, farmland, and mountain land (Figure 7(g)). In the foothills and 
mountainous areas, landuse and landcover is changing, affecting the slope that triggers 
the landslides. Further, the construction land is mainly concentrated in the gentle river 
terraces on both sides of the Yangtze River. A large number of excavations, slope cutting, 
and other activities in the construction of houses and roads directly impact the slope’s 
stability, and the information value is the highest of 0.85.

4.2.8. Slope structure
Slope structure indicates the intersection relationship between strata and slope, which 
determines the direction of the sedimentary stack on the slope. The slope structure is div
ided according to Table 3 (Figure 7(h)). In this study area, landslides mainly occurred in 
the B2 region. 35.06% of the total pixels are distributed in this category, whose informa
tion value is 0.42.

Table 2. Definition for slope geometry classification.

Plan curvature

Profile curvature Outward slope (X) Inward slope (V) Straight slope (GR)

Convex slope (X) X/X V/X GE/X
Concave slope (V) X/V V/V GE/V
Straight slope (GE) X/GR V/GR GE/GR

Table 3. Classification of slope structure (Zhou et al. 2018).

Category Definition (slope: h, aspect: r, bed dip angle: a, bed dip direction: b)

B1 a< 10�

B2 ((ja-bj2 (0,30�)jj(ja-bj2(330� ,360�)))&&(a > 10�)&&(h > a)
B3 ((ja-bj2(0,30�))jj (ja-bj2(330� ,360�)))&&(a > 10�)&&(h ¼ a)
B4 ((ja-bj2(0,30�)jj(ja-bj2(330� ,360�)))&&(a > 10�)&&(h < a)
B5 (ja-bj2(30� ,60�)jj (ja-bj2(330� ,360�))
B6 (ja-bj2(60� ,120�)jj(ja-bj2(240� ,300�))
B7 (ja-bj2(90� , 150�))jj(ja-bj2(210� ,240�))
B8 (ja-bj2(120� , 180�))jj(ja-bj2(180� ,210�))
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4.2.9. Lithology
We divide the lithology in the study area into five classes (Table 4 and Figure 7(i)). In the 
stratiform structure containing weak strata, especially in the stratified clastic rocks and 
the carbonate rocks developed on the weak bedrock, the large and medium-sized land
slides more formed, and its information value is 0.42. On the other hand, few landslides 
developed in the hard rocks, such as granite and diorite, with the information value being 
the lowest of −3.94.

4.2.10. Topographic wetness index
Topographic Wetness Index (TWI) reflects topography’s influence on soil water satur
ation. It can be calculated using the following formula:

TWI ¼ ln
As

tanb

� �

(6) 

where, AS is the upstream gathering area and b is the slope. The TWI is divided into six 
classes: (1.37, 3), (3, 4.5), (4.5, 6), (6, 7.5), (7.5, 9), and (9, −1] (Figure 7(j)). When the 
TWI value is within the range (7.5 � 9), it shows the most substantial positive influence 
on landslide occurrence, whose information value is the highest of 0.72.

4.2.11. Distance to rivers
This study area is obviously affected by the hydrogeological environment, whose main 
river system is the Yangtze River and its tributaries (Figure 1). After the impoundment of 
the TGRA, the stability of the bank slopes is influenced by the periodical fluctuation of 
reservoir water level, river erosion, and softening effect. The factor of distance to rivers 
represents the intensity of its influence. We divide the distance to rivers into four classes, 
namely (0 � 300 m), (300 m�900 m), (900 m�1,200 m), and �1,200 m (Figure 7(k)). The 
maximum information value is 0.92 within the distance range of 300 m. With the distance 
increasing, the influence of the river system on landslides gradually weakened, and the 
information value decreased.

4.2.12. Distance to faults
Due to the severely broken rock mass and intense tectonic movement in the area, minor 
faults develop and serve as triggers for landslides. The distance of the faults to the land
slide prone area control the intensity of landslides. The distance to faults is classified into 
five categories, namely (0 � 500 m), (500 � 1,000 m), (1,000 � 1,500 m), (1,500 � 2,000 m), 
and �2,000 m (Figure 7(l)). Their information values are −0.04, 0.08, 0.24, 0.23, and 
−0.22, respectively.

Table 4. Lithological classification in this study area.

Category Geologic group Main lithology

L1 d2-1, Pt Granite and diorite
L2 Z, e1, e2 þ 3, O, T1j, T2b3 Limestone, Shale, Malmstone
L3 T1d, T2b4 þ 5, J1x, J2s, J3s Marl mudstone
L4 S, J2x Shale, Mudstone and Shi Ying Sandstone, Muddy Siltstone, etc.
L5 T3s, J1-2n, J3p Malmstone (Feldspar sandstone, Shi Ying Sandstone, etc.) with coal seam
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4.3. Landslide susceptibility modelling

4.3.1. Multi-collinearity analysis
The collinearity factors will affect the performance of the evaluation model. Therefore, it 
is necessary to carry out a collinearity analysis prior to the LSM, to ensure that the factors 
are independent. The multi-collinear analysis is performed using Tolerance (T) and 
Variance Inflation Factor (VIF). When T is greater than 0.2 or VIF is less than 5, it is 
considered that there is no multi-collinearity between the factors. Both indices of T and 
VIF are calculated using SPSS Statistics 26.0, and the results are shown in Table 5, show
ing that all the twelve factors are independent with no collinearity.

4.3.2. Non-landslide sampling using LR
In this study, we randomly selected 70% of landslide pixels for training and the remaining 
30% for validation, and the method of k-fold cross validation is applied for training. 
Simultaneously, the same number of non-landslide samples are selected for model train
ing. We propose a non-landslide sampling method to extract high-quality samples by the 
LR algorithm. At first, we produce a preliminary landslide susceptibility map by randomly 
selecting non-landslide as an example in landslide-free areas, using the following equa
tions:

LogitðPÞ ¼ −10:87 þ 2:175 � x1 þ 1:17 � x2 þ 6:028 � x3 þ 1:079 � x4 þ 0:750 � x5 þ 1:071 � x6þ

0:987 � x7 þ 0:600 � x8 − 1:263 � x9 þ 0:672 � x10 þ 0:559 � x11 þ 0:814 � x12
(7) 

where x1, x2, … , x12 are independent variables, which indicate the factor values of the 
slope, aspect, altitude, slope shape, landuse, topographic relief, TRI, TWI, slope structure, 
lithology, distance to rivers, distance to faults; P is the probability of landslide susceptibil
ity. The landslide susceptibility index is divided into five levels: very high (5%), high 
(10%), medium (15%), low (20%), and very low (50%). The non-landslide samples for 
training are randomly selected only in the Very Low area. The preliminary susceptibility 
map (Figure 8) shows different classes of susceptibility (very high, high, moderate, low, 
very low and non-landslide) zone along both sides of the Yangtze River. The non-land
slide samples are distributed throughout the study area, concentrated in the areas with 
high altitudes, steep slopes and few human engineering activities. Due to topographical 
and lithological constraints, landslides rarely develop in these areas. Therefore, the engin
eering geological conditions of the selected samples are quite different from those of the 
landslide, and they are more representative of landslide-free areas.

Table 5. Multi-collinearity analysis of the causal factors.

Influencing factors T VIF

Elevation 0.43 2.30
Slope 0.26 3.80
Aspect 0.96 1.04
Terrain Roughness Index 0.31 3.18
Topographic relief 0.32 3.12
Slope shape 0.64 1.52
Landuse 0.81 1.22
Slope structure 0.26 3.80
Stratigraphic lithology 0.94 1.06
Topographic Wetness Index 0.75 1.34
Distance to rivers 0.45 2.25
Distance to faults 0.95 1.05
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4.3.3. Parameter setting
4.3.3.1. Single models of CART and MLP. Maximum tree depth is the crucial parameter 
for CART Modelling. In this article, a trial-and-error method is used to determine the 
maximum tree depth of the CART as 8. Regarding MLP, the number of hidden layers 
and neurons affects its modelling accuracy. After multiple sets of tests, we find that a 
model structure of MLP with two hidden layers is suitable. The neuron number of the 
first and second layers are set to 8 and 25, respectively.

4.3.3.2. CART-Boosting. In the same way, we obtain the relationship between the parame
ters and model accuracy of CART-Boosting through multiple sets of trials (Figure 9). 
Similarly with CART-Bagging, the accuracy of CART-Boosting first increases and then 
decreases with the classifier number when the maximum tree depth is constant. In the 
case of fewer than 10 classifies, the model accuracy increases with the maximum tree 
depth; while the classifier number is larger than 10, the model accuracy showed a 

Figure 9. Accuracy statistics of CART-Boosting with various parameters.

Figure 8. Preliminary susceptibility map and the distribution of non-landslide samples.
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downward trend after the growth. Therefore, we set the maximum tree depth and the 
classifier number of CART-Boosting to 10 and 14, respectively.

4.3.3.3. CART-Bagging. The number of classifier and the maximum tree depth are the sig
nificant parameters for the CART-based ensemble learning models. To determine the 
optimal parameters, we obtain the relationship between the two parameters and the model 
accuracy of CART-bagging through multiple trials. As shown in Figure 10, when the max
imum tree depth is determined, the modelling accuracy increases with the classifier num
ber within a specific range. Similarly, when the classifier number is constant, and the 
maximum tree depth is less than 10, the modelling accuracy increases with the increase of 
maximum tree depth. Therefore, we set the maximum tree depth and the classifier num
ber of CART-bagging as 8 and 10, respectively.

4.3.3.4. MLP-Bagging and MLP-Boosting. The relationship between classifier number and 
the accuracy of MLP-based ensemble learning models is shown in Table 6. For MLP- 
Bagging and MLP-Boosting, the model accuracy first increases and then decreases with 
the classifier number. For example, both models achieve the highest accuracy when the 
classifier number is 14. With this, we set the classifier number of MLP-Bagging and MLP- 
Boosting models to 14.

4.4. Landslide susceptibility mapping

The probability of landslide susceptibility is calculated by applying CART-Bagging, 
CART-Boosting, MLP-Bagging, MLP-Boosting, single CART, and single MLP models, 
respectively, which are be implemented through SPSS Modeler. According to the ratio of 
0.5: 1: 1.5: 2: 5, the probability value of landslide susceptibility is divided into five levels, 
namely Very High, High, Moderate, Low, and Very Low. The produced landslide 

Figure 10. Accuracy statistics of CART-Bagging with various parameters.

Table 6. Statistics of the classifier number and accuracy.

No. of classifier 6 8 10 12 14 16 18 20

MLP-Bagging 0.9682 0.9740 0.9756 0.9764 0.9780 0.9767 0.9765 0.9761
MLP-Boosting 0.9823 0.9829 0.9848 0.9852 0.9857 0.9855 0.9853 0.9852
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Figure 11. Landslide susceptibility maps using different methods (a) LR-MLP-Boosting, (b) LR-MLP-Bagging, (c) LR- 
CART-Boosting, (d) LR-CART-Bagging, (e) LR-MLP, (f) LR-CART, (g) No-MLP-Boosting, (h) No-MLP-Bagging, (i) No-CART- 
Boosting, (j) No-CART-Bagging, (k) No-MLP, and (l) No-CART.
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susceptibility maps are presented in Figures 11(a–f). In addition, to verify the quality of 
the non-landslide samples selected by the LR constraint method, we used random sam
pling method to choose a set of non-landslide samples under no constraint condition (the 
whole landslide-free areas) for comparison. Similarly, these six models are used for LSM 
as well. The produced landslide susceptibility maps are shown in Figures 11(g–l).

5. Discussion

5.1. The relationship between landslide development and the main factors

The statistics of information value (Table 1) and susceptibility maps (Figure 11) indicate 
that the spatial development of landslides in the study area is mainly controlled by alti
tude, lithology, and distance to rivers. The widely distributed mudstone, marlstone, and 
weak strata, as well as the layered clastic rock strata containing weak interlayers, signifi
cantly reducing the sliding mass strength and making the slope vulnerable to instability 
(Tang et al. 2019). In the study area, the majority of landslides manifest at low altitudes. 
Altitudes lower than 240 meters exert the most pronounced influence on landslide devel
opment, with a maximum information value of 1.49. This is because many human engin
eering activities occur in this area, where the thick loose deposits provide the material 
basis for landslide occurrence. The periodic fluctuation of reservoir water level 
significantly changes the hydrogeological conditions of bank slopes, and plenty of seep
age-driven and buoyancy-driven landslides are triggered (Zhou et al. 2022a). In the 
mountainous regions along the road, excessive rainfall enhances flow in the drainage, 
leading to the erosion of rock masses and the initiation of landslides. The statistics in 
Table 1 suggest that the closer the slope to the river, the more it is affected. When the 
distance to rivers is less than 300 m, its information value is high at 0.92. It is to be noted 
that the information value method is a typical statistical method whose reliability depends 

Table 7. Statistical results of susceptibility zoning.

Levels

Landslide pixles Domain pixles
Ratio 
(a/b)No. % (a) No. % (b)

No-CART
Very Low 861 3.56 353,136 50.55 0.07
Low 1,506 6.22 138,069 19.76 0.31
Moderate 4,882 20.18 101,150 14.48 1.39
High 8,393 34.69 69,174 9.90 3.50
Very High 8,553 35.35 37,117 5.31 6.65

No-MLP
Very Low 846 3.35 351,927 50.37 0.07
Low 1,666 6.89 134,798 19.29 0.36
Moderate 5,174 21.38 108,194 15.49 1.38
High 8,250 34.09 68,527 9.81 3.48
Very High 8,259 34.14 35,200 5.04 6.77

LR-CART
Very Low 645 2.67 341,817 48.93 0.05
Low 1,543 6.38 145,048 20.76 0.30
Moderate 4,674 19.32 107,442 15.38 1.26
High 8,726 36.07 68,256 9.77 3.69
Very High 8,607 35.57 36,083 5.16 6.89

LR-MLP
Very Low 652 2.69 352,147 50.4 0.05
Low 1,408 5.82 136,945 19.6 0.30
Moderate 4,869 20.12 107,515 15.39 1.31
High 8,854 36.59 67,333 9.64 3.80
Very High 8,412 34.77 34,706 4.97 7.00
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on the number of samples. Additionally, we conducted importance analysis of factors 
using the random forest method. Our findings reveal that altitude and lithology are the 
two factors with the highest contribution values, 0.15 and 0.11, respectively. These results 
align closely with those obtained from the statistics of information value.

The purpose of LSM is to quantitatively and accurately establish the non-linear rela
tionship between influencing factors and the probability of landslide occurrence. Earlier 
studies have suggested that the selection of appropriate input factors is essential for effect
ively LSM using ML techniques (Zhou et al. 2018; Gentilucci et al. 2023; Qazi et al. 2023). 
If essential factors are not included as ML inputs, the model is at risk of underfitting. At 
the same time, selecting too many factors may lead to noise introduced by unimportant 
indicators, thereby decreasing the accuracy of LSM. Therefore, we believe that prior to 
conducting ML-based LSM, it is essential to understand the impact of each causal factor 
on landslide occurrence and select appropriate causal factor inputs.

5.2. Performance comparison of the used algorithms

5.2.1. Machine learning algorithms
To verify the performance of the machine learning algorithms, we count the pixel distri
bution of four landslide susceptibility maps produced by LR-CART, LR-MLP, No-CART, 
and No-MLP. The statistics (Table 7) indicate that the maps produced by these four mod
els are similar. The landslide development law is consistent with the mapping results, 
which indicates that the LSM is reliable. Regarding LR-MLP, the higher the landslide sus
ceptibility level, the higher the landslide ratio. 34.77% of the landslide pixels are located 
in the Very High susceptibility area, with the highest landslide ratio of 7.00.

Conversely, only 2.67% of the landslide pixels lie in the Very Low susceptibility area, 
and the landslide ratio is 0.05. In the results of LR-MLP, the landslide ratio in the Very 
High susceptibility area is the highest at 6.89, where 35.57% of landslide pixels are distrib
uted in this area. The same characteristics are presented in the results of the No-MLP 
and No-CART models. The statistics suggest that MLP is slightly performed better than 
CART.

The receiver operating characteristic (ROC) curve is a commonly used performance 
evaluation method in LSM. The area under the ROC curve (AUC) is used to assess model 
performance, and the model with a larger AUC is considered better. As shown in 
Figure 12, LR-MLP outperforms LR-CART, and their AUCs are 0.901 and 0.889, respect
ively. No-MLP achieves better accuracy than No-CART as well. The ROC curves suggest 
that both algorithms of MLP and CART perform excellently in LSM. We can infer MLP 
algorithm can more accurately establish the nonlinear relationship between landslide 
occurrence and its influencing factors than CART.

5.2.2. Ensemble learning algorithms
The results of the eight coupling models are shown in Table 8. In the landslide suscepti
bility map generated by LR-MLP-Boosting, 43.75% of the landslide pixels are concentrated 
in the Very High susceptibility area, exhibiting the highest landslide ratio at 8.594. In 
contrast, the Very Low susceptibility area registers the lowest ratio at 0.028. LR-MLP- 
Boosting not only has the highest prediction accuracy but also has the lowest false nega
tive error which may lead to catastrophic losses. Highest landslide ratios in Very High 
susceptibility areas and lowest landslide ratios in Very Low susceptibility areas suggest 
that this method achieves the most excellent performance. The results indicate that 
LR-MLP-Boosting performs better compared to the LR-CART-Boosting, and 
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LR-MLP-Bagging outperforms LR-CART-Bagging. The same comparison results are pre
sented in the results of the No-MLP-Boosting, No-MLP-Bagging, No-CART-Boosting, 
and No-CART-Bagging models.

We have also utilized the ROC curves to quantify the performance of the coupling 
models. The same conclusion about the performance ranking of the coupled models can 
be drawn from the ROC Curves (Figure 13). LR-MLP-Boosting achieved the best predic
tion accuracy with the highest AUC of 0.985. Apparently, the coupling models outper
formed the single machine learning models. Boosting and Bagging improved the accuracy 
of LR-MLP by 0.085 and 0.077, respectively, while improving the accuracy of LR-CART 
by 0.092 and 0.084, respectively (Table 9). Accuracy improvement from Boosting was 
more significant than the improvement from Bagging. In the Boosting method, the pre
diction of all the classifiers was sequentially integrated into the training process to achieve 
the final results. However, it was parallel to the Bagging method. The Boosting method 
was more effective at reducing the deviation and variance, which enhances the prediction 
ability of the coupling model.

5.3. The advantages of the proposed method for non-landslide sampling

High-quality non-landslide samples are critical to the performance improvement of LSM. 
Numerous methods have been proposed to control the sampling range of non-landslide 
areas, aiming to acquire high-quality samples. Fu et al. (2023) investigated the impact of 
four non-landslide sampling methods on LSM and proposed a novel integrative sampling 
approach that incorporates multiple existing methods, which achieve the best perform
ance. Theoretically, controlling the range of sampling can enhance the quality of non- 
landslide samples, and this notion supported by many studies (Dou et al. 2023; Hong 
et al. 2024). However, an improper control range can result in a decrease in the quality of 
non-landslide sampling. Wang et al. (2022) designed two distinct non-landslide sampling 
areas, covering both the entire study region and the mountainous area of Anhui Province, 
China, to explore the impacts of different spatial extents on LSM. The results indicate 
that sampling from the mountainous area yields inferior performance of LSM.

Figure 12. ROC curves of single models: (a) LR- and No-CART, and (b) LR- and No-MLP.
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In this study, we use two methods for non-landslide sampling, and two single models 
and four coupling models for susceptibility mapping are established using selected sam
ples. As shown in the ROC curves and statistics (Figures 12 and 13, Tables 8 and 9), all 
the LR- models achieve a better performance compared to the corresponding No- models. 
It indicates that the application of the LR model to constrain the selection range of non- 
landslide samples can effectively improve sample quality. Many machine learning methods 
can produce more accurate initial susceptibility maps to constrain the range of non-land
slide sampling. However, as reported in earlier studies (Zhou et al. 2018; Sun et al. 2022), 

Table 8. Statistical results of each landslide susceptibility zoning.

Levels

Landslide pixels Domain pixels
Ratio 
(a/b)No % (a) No % (b)

LR-MLP-Boosting
Very Low 346 1.43 352,156 50.41 0.028
Low 706 2.92 135,816 19.44 0.150
Moderate 3,222 13.32 105,327 15.08 0.883
High 9,336 38.59 69,792 9.99 3.863
Very high 10,585 43.75 35,555 5.09 8.597

LR-MLP-Bagging
Very Low 423 1.75 359,283 51.43 0.034
Low 933 3.86 131,112 18.77 0.205
Moderate 4,185 17.30 105,520 15.10 1.145
High 8,998 37.19 68,320 9.78 3.803
Very High 9,656 39.91 34,411 4.93 8.103

LR-CART-Boosting
Very Low 394 1.63 364,801 52.22 0.031
Low 770 3.18 122,823 17.58 0.181
Moderate 3,829 15.83 107,890 15.44 1.025
High 9,006 37.22 67,320 9.64 3.863
Very High 10,196 42.14 35,812 5.13 8.221

LR-CART-Bagging
Very Low 413 1.71 342,258 48.99 0.035
Low 1,105 4.57 145,233 20.79 0.220
Moderate 3,786 15.65 107,928 15.45 1.013
High 8,883 36.71 67,105 9.61 3.820
Very High 10,008 41.36 36,122 5.17 8.000

No-MLP-Boosting
Very Low 595 2.46 342,258 51.43 0.048
Low 929 3.84 145,233 18.77 0.205
Moderate 4,124 17.04 107,928 15.07 1.131
High 8,834 36.51 67,105 9.78 3.735
Very High 9,713 40.14 36,122 4.96 8.094

No-MLP-Bagging
Very Low 601 2.48 353,804 50.64 0.049
Low 1,089 4.50 132,710 18.99 0.237
Moderate 4,034 16.67 108,589 15.54 1.073
High 8,707 35.99 67,991 9.73 3.698
Very High 9,764 40.36 35,552 5.09 7.930

No-CART-Boosting
Very Low 623 2.57 352,231 50.16 0.051
Low 1,106 4.57 135,474 19.39 0.236
Moderate 4,121 17.03 107,995 15.46 1.102
High 8,786 36.31 67,976 9.73 3.732
Very High 9,559 39.51 34,970 5.01 7.893

No-CART-Bagging
Very Low 622 2.57 342,258 48.99 0.050
Low 1,340 5.54 145,233 20.79 0.260
Moderate 3,750 15.50 107,928 15.45 1.000
High 8,688 35.91 67,105 9.61 3.740
Very High 9,795 40.48 36,122 5.17 7.830
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the performance of machine learning methods varies in regions, and high-quality data is 
required. As a result, a poor prediction may occur in some landslide-prone regions. Due 
to the simplicity of operation, high accuracy and stable performance, LR is widely used 
and consistently achieves acceptable results. In comparison, LR is a better choice to 
ensure the generalization of the non-landslide sampling method.

Random sampling from the whole landslide-free areas is the most utilized method for 
non-landslide sampling. The non-landslide pixels obtained through random sampling 
without any constrained conditions may have engineering geological conditions that are 
susceptible to landslides. The mixing of these pixels will reduce the quality of non-land
slide samples. Furthermore, various engineering geological conditions contribute to the 
absence of landslides. Some non-landslide sampling range constraint methods, such as the 
low-slope method, may fail to capture non-landslide samples with diverse geological con
ditions. This can easily exert a negative impact on LSM. LR model produces an initial sus
ceptibility map, and non-landslide samples are only selected from the Very Low 
susceptibility areas. This method can effectively avoid the mis-selection of samples in 
landslide-prone areas and keep the diversity of non-landslide sample characteristics. In 
general, our proposed non-landslide sampling method is conducive to improving LSM 
performance and can be applied worldwide.

6. Conclusion

In this study, we considered twelve causal factors as inputs for LSM after multi-collinear
ity analysis. The relationship between landslide spatial development and each causal factor 

Figure 13. ROC curves of coupling models: (a) no constraint sampling and (b) LR constrained sampling.

Table 9. Statistics of modelling accuracy.

Single model
Original

Bagging Boosting

AUC AUC Improvement AUC Improvement

No sampling
CART 0.842 0.926 0.084 0.935 0.093
MLP 0.870 0.932 0.062 0.940 0.070

LR sampling
CART 0.889 0.973 0.084 0.981 0.092
MLP 0.901 0.978 0.077 0.986 0.085

22 C. ZHOU ET AL.



is quantitatively analyzed. We found that the altitude (<240 m) and distance to rivers 
(<300 m) emerged as important factors for landslide occurrence in the study area. Their 
information values were the highest at 1.49 and 0.92, respectively. LR-MLP-Boosting 
achieved the highest prediction accuracy with an AUC of 0.985. The accuracy comparison 
indicates that MLP performs better than CART. The ensemble methods outperformed the 
corresponding single classifiers, and Boosting algorithm slightly performed better than 
Bagging algorithm. LR is a reliable method to generate a preliminary susceptibility map to 
determine the Very Low susceptibility area. The non-landslide samples selected from the 
low susceptibility area are of higher quality than those selected from the entire landslide- 
free areas. High-quality non-landslide samples, which can be effectively obtained by using 
the LR model to constrain its sampling range, is able to enhance the performance of 
LSM. These results will be of great help to the community and to the scientists to moni
tor landslide susceptible locations and to get early information about the occurrence of 
landslide events to minimize loss and damage.
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