245 research outputs found

    SRSF1 modulates the organization of splicing factors in nuclear speckles and regulates transcription

    Get PDF
    The mammalian cell nucleus is compartmentalized into non-membranous subnuclear domains that regulate key nuclear functions. Nuclear speckles are subnuclear domains that contain pre-mRNA processing factors and non-coding RNAs. Many of the nuclear speckle constituents work in concert to coordinate multiple steps of gene expression, including transcription, pre-mRNA processing and mRNA transport. The mechanism that regulates the formation and maintenance of nuclear speckles in the interphase nucleus is poorly understood. In the present study, we provide evidence for the involvement of nuclear speckle resident proteins and RNA components in the organization of nuclear speckles. SR-family splicing factors and their binding partner, long non-coding MALAT1 RNA, can nucleate the assembly of nuclear speckles in the interphase nucleus. Depletion of SRSF1 in human cells compromises the association of splicing factors to nuclear speckles and influences the levels and activity of other SR proteins. Furthermore, on a stably integrated reporter gene locus, we demonstrate the role for SRSF1 in RNA polymerase II-mediated transcription. Our results suggest that SR proteins mediate the assembly of nuclear speckles and regulate gene expression by influencing both transcriptional and posttranscriptional activities within the cell nucleus

    A dynamical model reveals gene co-localizations in nucleus

    Get PDF
    Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency-or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Heterogeneous nuclear ribonucleoprotein K: altered pattern of expression associated with diagnosis and prognosis of prostate cancer

    Get PDF
    Using proteomic analysis of the nuclear matrix (NM), we found that heterogeneous nuclear ribonucleoprotein K (hnRNP K), a member of the hnRNP family with pleiotropic functions, was differentially expressed in prostate cancer (PCa) tissues. This study aimed to characterise the expression of hnRNP K and its subcellular localisation in PCa, utilising immunohistochemical and quantitative western blot techniques. Furthermore, the hnRNP K expression was studied in human PCa cell lines in order to determine its modulation by bicalutamide, the anti-androgen widely used in PCa therapy. Immunohistochemical staining of paraffin-embedded tissues showed that hnRNP K was overexpressed in PCa, where it was localised both in the cytoplasm and in the nucleus. Staining of non-tumour tissues showed exclusively nuclear localisation and a less intense or absent signal. Immunoblot analysis demonstrated that the hnRNP K level within the NM was higher in PCa compared with non-tumour tissues and closely correlated with Gleason score (P=0.008). Higher expression within the NM was significantly (P=0.032) associated with poor prognosis. In two-dimensional western blot analysis hnRNP K presented several isoforms; the one with pI 5.1 was the most differently expressed between non-tumour and PCa tissues. Preliminary results indicate that hnRNP K can be modulated in vitro by a non-steroidal anti-androgen. Taken together, our findings suggest that hnRNP K has potential implications at the diagnostic, prognostic and therapeutic levels in PCa

    Potential Targets' Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas-an ENITEC Group Initiative

    Get PDF
    Purpose: Uterine sarcomas are rare and heterogeneous tumors characterized by an aggressive clinical behavior. Their high rates of recurrence and mortality point to the urgent need for novel targeted therapies and alternative treatment strategies. However, no molecular prognostic or predictive biomarkers are available so far to guide choice and modality of treatment. Experimental Design: We investigated the expression of several druggable targets (phospho-S6(S240) ribosomal protein, PTEN, PDGFR-alpha, ERBB2, and EGFR) in a large cohort of human uterine sarcoma samples (288), including leiomyosarcomas, low-grade and high-grade endometrial stromal sarcomas, undifferentiated uterine sarcomas, and adenosarcomas, together with 15 smooth muscle tumors of uncertain malignant potential (STUMP), 52 benign uterine stromal tumors, and 41 normal uterine tissues. The potential therapeutic value of the most promising target, p-S6(S240), was tested in patient-derived xenograft (PDX) leiomyosarcoma models. Results: In uterine sarcomas and STUMPs, S6S240 phosphorylation (reflecting mTOR pathway activation) was associated with higher grade (P = 0.001) and recurrence (P = 0.019), as shown by logistic regression. In addition, p-S6(S240) correlated with shorter progression-free survival (P = 0.034). Treatment with a dual PI3K/mTOR inhibitor significantly reduced tumor growth in 4 of 5 leiomyosarcoma PDX models (with tumor shrinkage in 2 models). Remarkably, the 4 responding models showed basal p-S6(S240) expression, whereas the nonresponding model was scored as negative, suggesting a role for p-S6(S240) in response prediction to PI3K/mTOR inhibition. Conclusions: Dual PI3K/mTOR inhibition represents an effective therapeutic strategy in uterine leiomyosarcoma, and p-S6(S240) expression is a potential predictive biomarker for response to treatment. (C)2017 AACR.Peer reviewe

    Nucleologenesis in the Caenorhabditis elegans Embryo

    Get PDF
    In the Caenorhabditis elegans nematode, the oocyte nucleolus disappears prior to fertilization. We have now investigated the re-formation of the nucleolus in the early embryo of this model organism by immunostaining for fibrillarin and DAO-5, a putative NOLC1/Nopp140 homolog involved in ribosome assembly. We find that labeled nucleoli first appear in somatic cells at around the 8-cell stage, at a time when transcription of the embryonic genome begins. Quantitative analysis of radial positioning showed the nucleolus to be localized at the nuclear periphery in a majority of early embryonic nuclei. At the ultrastructural level, the embryonic nucleolus appears to be composed of a relatively homogenous core surrounded by a crescent-shaped granular structure. Prior to embryonic genome activation, fibrillarin and DAO-5 staining is seen in numerous small nucleoplasmic foci. This staining pattern persists in the germline up to the ∼100-cell stage, until the P4 germ cell divides to give rise to the Z2/Z3 primordial germ cells and embryonic transcription is activated in this lineage. In the ncl-1 mutant, which is characterized by increased transcription of rDNA, DAO-5-labeled nucleoli are already present at the 2-cell stage. Our results suggest a link between the activation of transcription and the initial formation of nucleoli in the C. elegans embryo

    Analysis of Spatial Point Patterns in Nuclear Biology

    Get PDF
    There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells

    Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis

    Get PDF
    The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis

    Scapinin, the Protein Phosphatase 1 Binding Protein, Enhances Cell Spreading and Motility by Interacting with the Actin Cytoskeleton

    Get PDF
    Copyright (c) 2009 Sagara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Scapinin, also named phactr3, is an actin and protein phosphatase 1 (PP1) binding protein, which is expressed in the adult brain and some tumor cells. At present, the role(s) of scapinin in the brain and tumors are poorly understood. We show that the RPEL-repeat domain of scapinin, which is responsible for its direct interaction with actin, inhibits actin polymerization in vitro. Next, we established a Hela cell line, where scapinin expression was induced by tetracycline. In these cells, expression of scapinin stimulated cell spreading and motility. Scapinin was colocalized with actin at the edge of spreading cells. To explore the roles of the RPEL-repeat and PP1-binding domains, we expressed wild-type and mutant scapinins as fusion proteins with green fluorescence protein (GFP) in Cos7 cells. Expression of GFP-scapinin (wild type) also stimulated cell spreading, but mutation in the RPEL-repeat domain abolished both the actin binding and the cell spreading activity. PP1-binding deficient mutants strongly induced cell retraction. Long and branched cytoplasmic processes were developed during the cell retraction. These results suggest that scapinin enhances cell spreading and motility through direct interaction with actin and that PP1 plays a regulatory role in scapinin-induced morphological changes.ArticlePLOS ONE. 4(1):e4247 (2009)journal articl

    Potent Inhibition of HIV-1 Replication by a Tat Mutant

    Get PDF
    Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection
    • …
    corecore