120 research outputs found

    Abstract and proportional myoelectric control for multi-fingered hand prostheses

    Get PDF
    Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses’ full functionality, it is essential to study efficient ways of high dimensional myoelectric control. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. But can a similar control scheme be translated into real-time operation of a dexterous robotic hand? We found that despite different degrees of freedom in the effector output, the learning process for controlling a robotic hand was surprisingly similar to that for a virtual two-dimensional cursor. Control signals were derived from the EMG in two different ways, with a linear and a Bayesian filter, to test how stable user intentions could be conveyed through them. Our analysis indicates that without visual feedback, control accuracy benefits from filters that reject high EMG amplitudes. In summary, we conclude that findings on myoelectric control principles, studied in abstract, virtual tasks can be transferred to real-life prosthetic applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10439-013-0876-5) contains supplementary material, which is available to authorized users

    Artificial proprioceptive feedback for myoelectric control

    Get PDF
    The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered non-invasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants’ were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated

    Combined influence of forearm orientation and muscular contraction on EMG pattern recognition

    Get PDF
    AbstractThe performance of intelligent electromyogram (EMG)-driven prostheses, functioning as artificial alternatives to missing limbs, is influenced by several dynamic factors including: electrode position shift, varying muscle contraction level, forearm orientation, and limb position. The impact of these factors on EMG pattern recognition has been previously studied in isolation, with the combined effect of these factors being understudied. However, it is likely that a combination of these factors influences the accuracy. We investigated the combined effect of two dynamic factors, namely, forearm orientation and muscle contraction levels, on the generalizability of the EMG pattern recognition. A number of recent time- and frequency-domain EMG features were utilized to study the EMG classification accuracy. Twelve intact-limbed and one bilateral transradial (below-elbow) amputee subject were recruited. They performed six classes of wrist and hand movements at three muscular contraction levels with three forearm orientations (nine conditions). Results indicate that a classifier trained by features that quantify the angle, rather than amplitude, of the muscle activation patterns perform better than other feature sets across different contraction levels and forearm orientations. In addition, a classifier trained with the EMG signals collected at multiple forearm orientations with medium muscular contractions can generalize well and achieve classification accuracies of up to 91%. Furthermore, inclusion of an accelerometer to monitor wrist movement further improved the EMG classification accuracy. The results indicate that the proposed methodology has the potential to improve robustness of myoelectric pattern recognition

    A synergy-based hand control is encoded in human motor cortical areas

    Get PDF
    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses

    Separability of neural responses to standardised mechanical stimulation of limbs

    Get PDF
    Abstract Considerable scientific and technological efforts are currently being made towards the development of neural prostheses. Understanding how the peripheral nervous system responds to electro-mechanical stimulation of the limb, will help to inform the design of prostheses that can restore function or accelerate recovery from injury to the sensory motor system. However, due to differences in experimental protocols, it is difficult, if not impossible, to make meaningful comparisons between different peripheral nerve interfaces. Therefore, we developed a low-cost electronic system to standardise the mechanical stimulation of a rat’s hindpaw. Three types of mechanical stimulations, namely, proprioception, touch and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from the sciatic nerve with a 16-contact cuff electrode. For the first time, results indicate separability of neural responses according to stimulus type as well as intensity. Statistical analysis reveal that cuff contacts placed circumferentially, rather than longitudinally, are more likely to lead to higher classification rates. This flexible setup may be readily adapted for systematic comparison of various electrodes and mechanical stimuli in rodents. Hence, we have made its electro-mechanical design and computer programme available onlin

    Implantable Neural Probes for Brain-Machine Interfaces - Current Developments and Future Prospects

    Get PDF
    A Brain-Machine interface (BMI) allows for direct communication between the brain and machines. Neural probes for recording neural signals are among the essential components of a BMI system. In this report, we review research regarding implantable neural probes and their applications to BMIs. We first discuss conventional neural probes such as the tetrode, Utah array, Michigan probe, and electroencephalography (ECoG), following which we cover advancements in next-generation neural probes. These next-generation probes are associated with improvements in electrical properties, mechanical durability, biocompatibility, and offer a high degree of freedom in practical settings. Specifically, we focus on three key topics: (1) novel implantable neural probes that decrease the level of invasiveness without sacrificing performance, (2) multi-modal neural probes that measure both electrical and optical signals, (3) and neural probes developed using advanced materials. Because safety and precision are critical for practical applications of BMI systems, future studies should aim to enhance these properties when developing next-generation neural probes

    Towards a synergy framework across neuroscience and robotics: Lessons learned and open questions. Reply to comments on: "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands"

    Get PDF
    We would like to thank all commentators for their insightful commentaries. Thanks to their diverse and complementary expertise in neuroscience and robotics, the commentators have provided us with the opportunity to further discuss state-of-the-art and gaps in the integration of neuroscience and robotics reviewed in our article. We organized our reply in two sections that capture the main points of all commentaries [1–9]: (1) Advantages and limitations of the synergy approach in neuroscience and robotics, and (2) Learning and role of sensory feedback in biological and robotics synergies

    Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements

    Get PDF
    Abstract Background Myoelectric pattern recognition systems can decode movement intention to drive upper-limb prostheses. Despite recent advances in academic research, the commercial adoption of such systems remains low. This limitation is mainly due to the lack of classification robustness and a simultaneous requirement for a large number of electromyogram (EMG) electrodes. We propose to address these two issues by using a multi-modal approach which combines surface electromyography (sEMG) with inertial measurements (IMs) and an appropriate training data collection paradigm. We demonstrate that this can significantly improve classification performance as compared to conventional techniques exclusively based on sEMG signals. Methods We collected and analyzed a large dataset comprising recordings with 20 able-bodied and two amputee participants executing 40 movements. Additionally, we conducted a novel real-time prosthetic hand control experiment with 11 able-bodied subjects and an amputee by using a state-of-the-art commercial prosthetic hand. A systematic performance comparison was carried out to investigate the potential benefit of incorporating IMs in prosthetic hand control. Results The inclusion of IM data improved performance significantly, by increasing classification accuracy (CA) in the offline analysis and improving completion rates (CRs) in the real-time experiment. Our findings were consistent across able-bodied and amputee subjects. Integrating the sEMG electrodes and IM sensors within a single sensor package enabled us to achieve high-level performance by using on average 4-6 sensors. Conclusions The results from our experiments suggest that IMs can form an excellent complimentary source signal for upper-limb myoelectric prostheses. We trust that multi-modal control solutions have the potential of improving the usability of upper-extremity prostheses in real-life applications
    corecore