593 research outputs found

    Henri Temianka Correspondence; (goodhill)

    Get PDF
    This collection contains material pertaining to the life, career, and activities of Henri Temianka, violin virtuoso, conductor, music teacher, and author. Materials include correspondence, concert programs and flyers, music scores, photographs, and books.https://digitalcommons.chapman.edu/temianka_correspondence/3523/thumbnail.jp

    A theoretical model of axon guidance by the Robo code

    Get PDF
    After crossing the midline, different populations of commissural axons in Drosophila target specific longitudinal pathways at different distances from the midline. It has recently been shown that this choice of lateral position is governed by the particular combination of Robo receptors expressed by these axons, presumably in response to a gradient of Slit released by the midline. Here we propose a simple theoretical model of this combinatorial coding scheme. The principal results of the model are that purely quantitative rather than qualitative differences between the different Robo receptors are sufficient to account for the effects observed following removal or ectopic expression of specific Robo receptors, and that the steepness of the Slit gradient in vivo must exceed a certain minimum for the results observed experimentally to be consistent

    Synergetic Analysis of the Haeussler-von der Malsburg Equations for Manifolds of Arbitrary Geometry

    Full text link
    We generalize a model of Haeussler and von der Malsburg which describes the self-organized generation of retinotopic projections between two one-dimensional discrete cell arrays on the basis of cooperative and competitive interactions of the individual synaptic contacts. Our generalized model is independent of the special geometry of the cell arrays and describes the temporal evolution of the connection weights between cells on different manifolds. By linearizing the equations of evolution around the stationary uniform state we determine the critical global growth rate for synapses onto the tectum where an instability arises. Within a nonlinear analysis we use then the methods of synergetics to adiabatically eliminate the stable modes near the instability. The resulting order parameter equations describe the emergence of retinotopic projections from initially undifferentiated mappings independent of dimension and geometry.Comment: Dedicated to Hermann Haken on the occasion of his 80th birthda

    The effect of angioscotomas on map structure in primary visual cortex

    Get PDF
    When blood vessels occlude the photoreceptor layer in the retina, they cast shadows onto the photoreceptors, creating angioscotomas (regions of the visual field to which that eye is blind). Remarkably, Adams and Horton (2002) have recently shown that it is sometimes possible to observe representations of these angioscotomas anatomically in the primary visual cortices of squirrel monkeys. However, there is substantial variability in the degree and form of these representations. The source of this variability is difficult to determine experimentally, because experimental studies are unavoidably limited by small sample size. In addition, experimental studies cannot compare the map structure that would develop with and without an angioscotoma. Here, we investigate these phenomena computationally using feature-mapping models of visual cortical development, which are not subject to the same limitations. These models suggest that the primary source of variability in angioscotoma representation is the precise timing of the onset of visual experience relative to the time course of ocular dominance column segregation. Furthermore, the models predict that angioscotomas could compete for control of local column layout with other influences such as cortical shape but that they have a small effect on the structure of orientation preference maps

    From perception to behavior: The neural circuits underlying prey hunting in larval zebrafish

    Get PDF
    A key challenge for neural systems is to extract relevant information from the environment and make appropriate behavioral responses. The larval zebrafish offers an exciting opportunity for studying these sensing processes and sensory-motor transformations. Prey hunting is an instinctual behavior of zebrafish that requires the brain to extract and combine different attributes of the sensory input and form appropriate motor outputs. Due to its small size and transparency the larval zebrafish brain allows optical recording of whole-brain activity to reveal the neural mechanisms involved in prey hunting and capture. In this review we discuss how the larval zebrafish brain processes visual information to identify and locate prey, the neural circuits governing the generation of motor commands in response to prey, how hunting behavior can be modulated by internal states and experience, and some outstanding questions for the field

    Optimizing cortical mappings

    Get PDF
    "Topographic" mappings occur frequently in the brain. A popular approach to understanding the structure of such mappings is to map points representing input features in a space of a few dimensions to points in a 2 dimensional space using some selforganizing algorithm. We argue that a more general approach may be useful, where similarities between features are not constrained to be geometric distances, and the objective function for topographic matching is chosen explicitly rather than being specified implicitly by the self-organizing algorithm. We investigate analytically an example of this more general approach applied to the structure of interdigitated mappings, such as the pattern of ocular dominance columns in primary visual cortex. 1 INTRODUCTION A prevalent feature of mappings in the brain is that they are often "topographic". In the most straightforward case this simply means that neighbouring points on a two-dimensional sheet (e.g. the retina) are mapped to neighbouring points..

    Optimizing the representation of orientation preference maps in visual cortex

    Get PDF
    The colorful representation of orientation preference maps in primary visual cortex has become iconic. However, the standard representation is misleading because it uses a color mapping to indicate orientations based on the HSV (hue, saturation, value) color space, for which important perceptual features such as brightness, and not just hue, vary among orientations. This means that some orientations stand out more than others, conveying a distorted visual impression. This is particularly problematic for visualizing subtle biases caused by slight overrepresentation of some orientations due to, for example, stripe rearing. We show that displaying orientation maps with a color mapping based on a slightly modified version of the HCL (hue, chroma, lightness) color space, so that primarily only hue varies between orientations, leads to a more balanced visual impression. This makes it easier to perceive the true structure of this seminal example of functional brain architecture

    Are visual cortex maps optimized for coverage?

    Get PDF
    The elegant regularity of maps of variables such as ocular dominance, orientation, and spatial frequency in primary visual cortex has prompted many people to suggest that their structure could be explained by an optimization principle. Up to now, the standard way to test this hypothesis has been to generate artificial maps by optimizing a hypothesized objective function and then to compare these artificial maps with real maps using a variety of quantitative criteria. If the artificial maps are similar to the real maps, this provides some evidence that the real cortex may be optimizing a similar function to the one hypothesized. Recently, a more direct method has been proposed for testing whether real maps represent local optima of an objective function (Swindale, Shoham, Grinvald, Bonhoeffer, & Hilbener, 2000). In this approach, the value of the hypothesized function is calculated for a real map, and then the real map is perturbed in certain ways and the function recalculated. If each of these perturbations leads to a worsening of the function, it is tempting to conclude that the real map is quite likely to represent a local optimum of that function. In this article, we argue that such perturbation results provide only weak evidence in favor of the optimization hypothesis
    corecore