
INTRODUCTION

Brain–machine interfaces (BMIs) enable direct communication 
between the brain and machines [1, 2]. Due to advancements in 
information and communication technology, BMIs have gained 

attention for their promising applications in medical, industrial, 
and household settings [3-6].

In a unidirectional BMI, the system consists of three compo-
nents: devices used to record neural signals, components used 
to analyze the signals, and devices used to provide commands to 
operate the machine, as illustrated in Fig. 1. In a bidirectional BMI, 
additional components are required to provide feedback from the 
machine to the brain [7, 8]. While both invasive and non-invasive 
methods have been developed for the acquisition of neural signals, 
the present review focuses on implantable neural probes. Thus, 
hereafter, we will use the terms “neural probes” and “invasive meth-
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ods” interchangeably. 
Electroencephalography (EEG) is widely utilized in non-invasive 

BMI systems due to its high temporal resolution, which makes it 
useful for mapping associations between EEG signals and cogni-
tive function [9-11]. For example, NeuroSky, Inc. (San Jose, CA, 
USA) introduced an EEG-based brain–medicine interfacing 
headset for use in healthcare settings. In addition, Emotiv, Inc. (San 
Francisco, CA, United Sates) provides a 14-channel system for 
measuring EEG and other bio-signals for use in brain–computer 
interfacing games and neurofeedback treatment. Functional near-
infrared spectroscopy (fNIRS) and magnetoencephalography 
(MEG) have also been used to develop non-invasive BMI systems 
[12-15]. However, non-invasive neural methods are limited in 
that neural signals from non-invasive probes are typically insuf-
ficient for complicated tasks that require a high degree of freedom, 
such as robot control [16-19]. For this reason, implantable neural 
probes are preferred for BMI systems that demand accurate con-
trols and adjustments (e.g., neuroprosthetic devices).

Implantable neural probes are defined as devices implanted into 

the brain or other nervous tissues. Communication between neu-
rons in the brain occurs via electrical and chemical signals. In most 
cases, electrical signals are the main source of information in BMI 
systems. In particular, single-unit activity (i.e., spikes) is regarded 
as most appropriate for extracting meaningful information, such 
as movement-related activity [20]. While non-invasive methods 
record neural activity through different media such as the dura 
matter, cerebral spinal fluid (CSF), and skull, implanted neural 
probes can record extracellular activity or local field potentials 
closer to neurons. To maximize the signal-to-noise ratio, the con-
ductive material is often exposed at the end of the electrode, the 
shank of which is insulated with non-conductive material. Typi-
cally, single-wire electrodes [21] and glass micropipette electrodes 
are used in electrophysiological studies [22, 23]. Recent advance-
ments have enabled the development of implantable neural probes 
with the technical characteristics necessary for practical BMI 
applications, which include high spatiotemporal resolution and 
high signal-to-noise ratio. Biocompatibility, biochemical stability, 
and miniaturization are also important, as neural probes must be 

Fig. 1. A schematic of a bidirectional brain-machine interface. As the figure illustrated, the system of brain-machine interface consists of three compo-
nents. First one is the system that acquires neural signal, for example, neural recording systems with a neural probe. Second one is decoding component 
to translate neural activities into machine operational languages. Third one is encoding component that analyze feedback data from sensors and stimu-
late the specific regions in the brain. A fundamental concept in the bidirectional interface is referred to [8] with a permission of Frontiers Media S.A. 
under the terms of the Creative Commons Attribution License (CC BY).
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inserted into the brain. Indeed, implantable multi-array neural 
probes with these characteristics have been developed and applied 
for research, diagnosis, and treatment purposes. Representative 
neural probes in this category include the tetrode, Utah array, and 
Michigan probe.

In the present report, we review the features of these three im-
plantable neural probes and their applications in BMI systems. 
Furthermore, we describe several novel technical approaches for 
improving the measurement of neural signals in BMI systems: (1) 
decreasing the invasiveness of implantable neural probes while 
maintaining performance, (2) using multi-modal probes to mea-
sure both electrical and optical signals from neurons, and (3) using 
flexible neural probes to enhance signal quality and biocompat-
ibility. We further discuss (4) novel fabrication techniques and ma-
terials that can be utilized to improve neural probes. By exploring 
recent developments in implantable neural probe technology, we 
offer insight into the performance required to create practical, ef-
ficient, and accurate BMI systems.

APPLICATION OF IMPLANTABLE NEURAL PROBES IN BMIs

BMIs have been successfully applied in the field of neuropros-
thetics, enabling patients with paralysis to control robot arms 
using their thoughts. The underlying neural principle of this 
phenomenon involves population vectors, in which each neuron 
“votes” for the intended movement [20]. Increasing the number 
of neuronal signals increases the likelihood of movement in the 
population vector. Thus, probes including a high number of chan-
nels are suitable for BMIs. In this section, we discuss three popular 

implantable neural probes with high numbers of channels.

TETRODE

The tetrode is widely utilized to record extracellular electrical po-
tentials in neural systems. As the prefix (tetr-) indicates, the tetrode 
consists of four electrodes at which neuronal signals are detected 
from slightly different spatial points originating from the same 
source. Such electrodes are typically constructed from a platinum–
tungsten alloy and insulated with quartz coating. The metal end of 
the electrode is exposed to acquire electrical signals. The diameter 
of each electrode at the metal end is usually less than 30 μm, and 
may be up to100 μm at the coated end. The coating functions to 
minimize the interference of electrophysiological signals across 
electrodes. As illustrated in Fig. 2A, a single tetrode can measure 
the extracellular potentials of approximately 1,100 neurons within 
a 140-μm radius in the rat cortex [24-26]. One main advantage of 
this method over single-channel electrodes is that users can clas-
sify the extracellular potentials of adjacent neurons using a cluster-
ing approach [27-29]. The extracellular potentials of each neuron 
are detected by the four electrodes in the tetrode with different 
temporal points and waveforms because due to the difference in 
spatial distance between each electrode and the neuron. Spikes 
from multiple neurons can thus be separated in the post-processing 
stage. However, the tetrode cannot provide direct measurements 
of spatially multi-dimensional extracellular potential distributions 
unless multiple tetrodes are precisely implanted and arranged at 
regular intervals. Recently, several research groups have developed 
multi-tetrode arrays to compensate for these shortcomings [30, 

Fig. 2. (A) A schematic to represent detectable areas of neural activities by a tetrode. By improved clustering and spike sorting methods, the tetrode can 
detect neural activities in areas of neural assembles with 280 μm diameters. The reprint of this figure in [26] was permitted by Nature Publishing Group 
(Springer Nature). (B) A schematic of an experimental setup to study the control of a robot by neural signals recorded by multiple tetrodes, which were 
implanted in the cortex of the rat. This figure published in [34] is reprinted with a permission of Society for Neuroscience.



456 www.enjournal.org https://doi.org/10.5607/en.2018.27.6.453

Jong-ryul Choi, et al.

31].
The tetrode has been used as an implantable neural probe in 

BMI platforms, especially in small animals. Giszter et al. described 
a neurorobotic platform, which consisted of a tetrode-based 
neural recording module and a three-dimensional (3D) robotic 
module, for use with spinal or cortical prosthetics in small animals 
(i.e., frogs and rats) [32]. Song et al. developed a novel BMI system 
to identify movement-related information in the rat cortex during 
treadmill walking [33]. Using decoded neural activity acquired 
from six implanted tetrodes, specific regions related to proximal 
limb and trunk movements were identified in the rat motor cor-
tex. In a follow-up study, Song and Giszter introduced a pelvis-

attached robot that can be controlled by cortical neural signals 
using a multi-tetrode array implanted in the rat brain (Fig. 2B) [34]. 
Bender et al. investigated that activity of central complex neurons 
in the insect brain during walking using a tetrode-based system 
[35]. The authors reported a close association between move-
ments and sensory responses, providing insight into the feasibility 
of such methods for use in larger animals with more developed 
brains. Additional groups have also reported advancements in 
post-processing techniques that enable sorting of spikes in practi-
cal BMI systems. For example, Oweiss introduced a novel spatio-
temporal signal processing method to improve data compression 
and reduce latency in multi-tetrode BMI systems [36]. Kubo et 

Fig. 3. (A) A figure of implanted two 96-channel Utah arrays on a motor and posterior cortex of a non-human primate to record neural signals for an 
investigation of a brain-machine interfacing platform under approve of Institutional Animal Care and Use Committee at Daegu-Gyeongbuk Medical 
Innovation Foundation, Korea. (B) A schematic of a brain-spine interface to produce the signal of the spinal cord for walking based on neural activities 
of the motor cortex. To be specific, neural activities of the motor cortex were recorded by a 96-channel Utah array and decoded information from the 
acquired neural activities was transmitted to an electrical pulse generator inserted in the spine. The pulse generator produced electrical stimulations for 
walking of a spine-injured non-human primate. The re-use of this figure published in [41] was permitted by Nature Publishing Group (Springer Nature). 
(C) Experimental procedures, a technological setup, and a map of implanted Utah and floating electrode arrays for generating contacting senses in an 
artificial hand with targeted neuro-stimulations in the somatosensory cortex. This figure in [42] is re-used with a permission of National Academy of 
Sciences. (D) A schematic of a paralyzed patient assistant platform based on on-site available neural cursor adjustments from neural signals, which were 
measured by implanted Utah array. A right figure illustrates radial-8 cursor trajectories of three participants (S3, T6, and T7). The re-use of this figure 
published in [47] was approved by Nature Publishing Group (Springer Nature).
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al. further investigated the 3D distributions of neurons based on 
multi-site neural activity using the tetrode [37].

UTAH ARRAY

Advancements in semiconductor fabrication processes dur-
ing the late 20th century have led to the development of multi-
channel arrays that perform better than single-channel electrodes 
in multiple respects. The Utah array is a commercially available 
intracortical electrode array consisting of up to 100 silicon needle-
shaped electrodes, which are produced via microscale fabrication 
techniques such as thermomigration, a combination of mechani-
cal and chemical micromachining, metal deposition, and encap-
sulation with a polymer made of imide monomers [38]. Due to 
the large number of electrodes, the Utah array has been mostly 
used in large animals, especially non-human primates (Fig. 3A). 
Velliste et al. investigated the ability of a BMI system to provide 
neuroprosthetic arm control via cortical motor activity in rhesus 
monkeys (Macaca mulatta) using Utah arrays [39]. In this study, 
the BMI system produced natural levels of multi-dimensional 
arm and hand movements. In addition, the same research group 
reported meaningful associations between visuomotor adaptation 
and neural activity in the primary motor cortex measured via the 
Utah arrays [40]. Capogrosso et al. developed a BMI platform to 
electrically stimulate the spinal cord according to decoded neural 
signals from the Utah array in the motor cortex of monkeys [41]. 
As described in Fig. 3B, the brain–spine interface enabled mon-
keys with spinal cord injuries to walk again based on commands 
from the motor cortex. Utah arrays have not only been used for 
recording, but also for stimulation purposes. For example, Tabot 
et al. induced tactile sensations in the hand via targeted neural 
stimulation with Utah arrays implanted in the somatosensory cor-
tex, as illustrated in Fig. 3C [42, 43]. This type of sensory feedback 
may aid in increasing the accuracy of various BMI devices and 
neuro-rehabilitation instruments. In addition, Suner et al. verified 
the reliability of chronic implementations of the Utah array in the 
brains of non-human primates [44].

The Utah array and its recording systems have been approved 
for clinical applications by the United States Food and Drug Ad-
ministration (FDA). Several clinical trials of Utah array-based 
BMI systems involving human patients have been conducted. 
Simeral et al. reported that one patient with tetraplegia could 
control a computer cursor (including point-and-click functions) 
based on neural signals from the motor cortex [45]. Pandarinath 
et al. analyzed neural population dynamics during movement in 
two patients with amyotrophic lateral sclerosis (ALS) as they at-
tempted to use their finger to move a computer cursor [46]. One 

year after implantation, the system still produced adequate signals 
for neural cursor control (Fig. 3D) [47] or virtual typing [48]. A 
more challenging task was performed by a human subject with 
Utah array implantation. Wodlinger et al. developed a BMI system 
for the control of an anthropomorphic robot arm and hand with 
10 degrees of freedom [49]. Some studies have also indicated that 
BMI systems can bypass the spinal cord circuit to recover hand 
function in select patients. Bouton et al. introduced a platform for 
controlling a neuromuscular electrical stimulation sleeve using 
neural signals from an implanted Utah array, enabling the patient 
to perform accurate and continuous movements (e.g., grasp-pour-
and-stir tasks) [50]. Ajiboye et al. developed an interfacing plat-
form between intracortical neural signals recorded by two Utah 
arrays and functional electrical stimulation of peripheral muscles 
to restore arm and hand movements in patients with paralysis [51]. 
As experiments of tactile feedbacks has been successful in non-
human primate, this type of research has begun to be applied to 
human subject. As tactile feedback experiments using Utah arrays 
have been successful in non-human primates, researchers have be-
gun to apply such systems in human patients. For example, Flesher 
et al. stimulated the somatosensory cortex using Utah arrays to 
recover tactile sensation in human patients [52].

MICHIGAN PROBE

The previous two neural probes enable users to acquire neural 
activity from different cortical areas. However, they are limited in 
their ability to target deep neural structures in the axial direction 
[53, 54]. In the late 1970s, the first prototype of Michigan probe, 
a multi-channel depth electrode prototype, was developed based 
on electron-beam lithographic techniques [55], which was before 
production of Utah array. Several preclinical studies involving 
small animals have demonstrated the safety of long-term implan-
tation for the Michigan probe, suggesting that such probes can be 
utilized in BMI systems [56-58]. Electrodes in the Michigan probe 
(2 to 15 mm) are longer than those in the Utah array (0.5 to 1.5 
mm for research). Thus, the Michigan probe may be more suitable 
when recording from deeper cortical structures.

Vetter et al. applied the Michigan probe to examine extracellular 
neural activity in the motor cortex of rats using a BMI system [56]. 
In a preclinical study on the control of emotions and memories, 
the Michigan probe was used to measure neural activity and pro-
vide electrical stimulation. Frost et al. investigated neural activity in 
the hindlimbs of rats with spinal cord injuries using a 16-channel 
Michigan probe and explored treatment methods based on neuro-
stimulation [59]. Guggenmos et al. investigated the use of a neural 
interfacing system to recover neural function after brain injuries 
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in small animals (i.e., rats) demonstrating that the missing brain 
functions can be restored using a brain–machine–brain interface 
as described in Fig. 4 [60]. Such findings suggest that neuropros-
thetics can successfully applied in the treatment of various neural 
diseases. Michigan probes have also been validated in non-human 
primates [61], supporting the notion that such probes can be used 
to develop neuroprosthetic systems for use in humans.

RECENT ADVANCES IN NEURAL PROBES FOR IMPROVE-
MENTS OF BMI SYSTEMS

In the previous session, we described the most widely used 
implantable neural probes in BMI applications. While the electri-
cal characteristics, biological compatibility, and stability of these 
probes are sufficient, researchers have attempted to improve their 
impedance, flexibility, wireless communication, recording area, 
and accuracy to ultimately improve BMI systems. In this section, 
we present an overview of recent studies that have responded to 
these technical challenges for practical BMI applications.

NOVEL IMPLANTABLE NEURAL PROBES WITH DECREASING A 
DEGREE OF INVASIVENESS AND MAINTAINING PERFORMANCE

High-performance ECoG electrode

Electrocorticography (ECoG) is used to monitor signals from 

the cerebral cortex using electrodes placed on the surface of the 
brain (subdural) or dura matter (epidural). In contrast to implant-
ed neural probes, which rely on single-unit activity, ECoG relies 
on local field potentials (LFPs). Although a craniotomy is still re-
quired to implement ECoG, no brain scarring occurs because the 
ECoG electrodes are not inserted into the brain tissue. ECoG pro-
vides more accurate neural signals than non-invasive approaches 
because due to direct (subdural) or close (epidural) contact with 
brain tissue. Since ECoG has clear advantages in terms of neural 
signal quality when compared with current non-invasive methods, 
it is widely used in the development of minimally invasive BMI 
systems [62-65]. Neural responses can be recorded from multiple 
sites in the human brain with high spatiotemporal resolution fol-
lowing tactile stimulation, supporting the use of ECoG in medical 
BMI applications [66]. For example, Wang et al. recorded activity in 
the human motor cortex during individual finger movement using 
micro-ECoG electrodes [67]. Subsequent studies demonstrated 
that a 32-channel ECoG electrode grid could be used to record 
LFPs in the sensorimotor cortex of a participant with tetraplegia 
[68]. Shin et al. introduced method for decoding muscle activation 
from neural activity based on ECoG signals in the motor cortex 
of non-human primates [69]. In this study, they investigated the 
potential for several advanced ECoG electrodes for use as neural 
probes in BMI systems.

Microfabrication techniques have been employed to develop 

Fig. 4. A theoretical model of a neural interfacing system to recover neural functions after brain injuries by neuro-prosthetic treatments. A schematic of 
a preclinical test with an implanted Michigan probe was shown. The plot in the lower right corner shows transient neural signals and artifact due to an 
electrical stimulation from the premotor cortex. The reprint published in [60] was approved by National Academy of Sciences.
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high-resolution ECoG electrodes. Rubehn et al. developed a flex-
ible, high-resolution (252 channels) ECoG electrode array to mea-
sure neural activity in the human brain by optimizing designs and 
implementing high-resolution MEMS fabrication techniques [70]. 
Henle et al. developed a microscale ECoG electrode array using a 
laser-based high-speed and high-resolution fabrication method 
[71]. Due to their biocompatibility, these types of electrode arrays 
are promising for use in various long-term, in vivo BMI applica-
tions. Toda et al. developed a mesh-type multi-channel ECoG elec-
trode array with narrow spacing by simplifying fabrication steps, 
including oxygen plasma etching [72]. In a preliminary in vivo 
study, the authors measured neural signals in the rat visual cortex, 
reporting that ocular selectivity could be predicted with 90% ac-
curacy by decoding the neural signals from their ECoG electrode 
array. Several research groups have proposed novel and optimized 
strategies for ECoG electrode arrangement. Slutzky et al. opti-
mized the spacing of each ECoG electrode to reduce invasiveness 
in ECoG-based BMI systems without sacrificing performance 
using finite element modeling of the electrical and physical prop-
erties of each component (i.e., scalp, skull, etc.) in the brain [73]. 
Tolstosheeva et al. investigated the application of a flexible ECoG 
neural probe (Fig. 5A) consisting of electrodes with three different 
sizes efficiently distributed on a soft pad [74, 75].

Advancements in ECoG recording systems have occurred with 
regard to both detection and transmission. Indeed, several studies 
have suggested that wireless ECoG recording systems can be im-
plemented in BMI systems. For instance, Charvet et al. developed 
a promising wireless 64-channel neural probe for the acquisition 
of neural activity as recorded via ECoG [76]. Similarly, wireless 
microscale ECoG neural probes have been used to investigate 
reach-and-grasp movements in non-human primates [77]. In ad-
dition, Chang and Chiou developed a chronic ECoG system that 
can be used to measure neural activity without communicating 
wires or batteries [78]. Such findings suggest that this type of neu-
ral probe can be integrated not only in freely moving animals, but 
also in humans.

Based on our review of studies involving high-performance 
ECoG with a large number of channels, we conclude that ECoG 
would be advantageous in BMI applications due to its relatively 
low level of invasiveness [79] and the potential for long-term LFP 
recording [80]. In addition, ECoG electrodes can be applied to 
brain regions of various shapes, enabling the application of BMI 
systems for various functions [74, 75]. We expect that advances in 
ECoG electrodes will further facilitate BMI applications.

Injectable neural probe

Some research groups have introduced flexible, syringe-inject-

able electronic devices for the measurement of chronic in vivo 
neural activity (Fig. 5B) [81]. To establish injectable neural probes, 
Liu et al. applied nanotechnology-based fabrication techniques to 
develop electronics composed of flexible mesh [82, 83]. Injectable 
mesh electronics can be produced via multiple fabrication tech-
niques such as photolithography, which can be used to define the 
structures and regions of nanoscale silicon wires, metal deposition, 
and in the chemical development of nanostructures [82-85]. One 
preliminary study revealed that such devices could be used to re-
cord neural activity in freely moving mice [86]. The mesh record-
ing electrodes has less invasiveness compared to other counterpart 
implantable probes due to their microscale size and high flexibility. 
If the biocompatibility and quality of acquired neural signals can 
be secured in the future, we believe that the injectable neural probe 
offers a better alternative for detecting brain activity in various 
BMI applications.

Stent electrodes array

A stent is a medical tube that can be implanted into the vessels 
to maintain an opening for blood flow. Stents are widely utilized 
in the treatment of arteriosclerosis since its appearance [87], as 
they are significantly less invasive than traditional methods [88, 
89]. To achieve minimal invasiveness and long-term biocompat-
ibility, Oxley et al. developed an endovascular stent-electrode 
array, as pictured in Fig. 5C [90]. Stent-electrode arrays can be 
installed by inserting a catheter into the appropriate cerebral 
blood vessel. Accurate induction of each electrode array position 
can be acquired using x-ray angiographic fluorography. One pre-
clinical study reported that stent-electrode arrays with multiple 
neural probes could be used for the long-term measurement of 
somatosensory evoked potentials in the sheep brain. The feasibil-
ity and sustainable biocompatibility of long-term/chronic neural 
interfaces in brain blood vessels have been confirmed via x-ray 
micro-tomography and histological assays [91]. Recent studies 
have demonstrated that endovascular stent-electrode arrays can 
be used to acquire vascular ECoG signals [92] and detect electro-
chemical changes via impedance spectroscopy [93]. Despite such 
advancements, no studies have demonstrated that state-of-the-art 
stent electrodes can provide immediately usable neural signals (e.g., 
movement-related activity) for BMI applications. Nonetheless, 
researchers have successfully acquired somatosensory evoked po-
tentials from stent electrodes implanted in the superficial cortical 
vein overlying the motor cortex in sheep via catheter angiography 
[90]. Therefore, future studies may be able to harness movement-
related information conveyed to stent electrodes to enhance BMI 
development.
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Wireless neural probes for BMIs

The use of physical wires inside the brain to acquire neural sig-
nals is associated with several disadvantages, such as the risk of 
infection and reduced freedom of movement. To overcome these 
shortcomings, researchers have investigated the application of 
wireless neural recording techniques to BMI systems. For instance, 
Schwarz et al. developed a wireless multi-channel platform for 
monitoring neural activity, which was applied successfully in freely 
moving non-human primates [94]. This system, which resembles a 

crown, consists of hundreds to thousands of microwire electrodes, 
a wireless recording/transmitting module, and a battery. In addi-
tion, the same research group introduced a wheelchair robot that 
could be controlled based on neural activity recorded wirelessly 
from an onboard monkey [95]. Similarly, Libedinsky et al. inves-
tigated the application of a robotic vehicle independently moved 
by neural signals using a 100-channel wireless probe. Su et al. in-
troduced a wireless implantable recording/stimulating probe for 
bidirectional BMIs, as described in Fig. 5D [96]. This latter probe is 

Fig. 5. (A) A flex-rigid 124-channel ECoG electrode array to measure neural activities. This neural probe was manufactured with advanced and high-
resolution microscale fabrication techniques. This figure in [75] is reprinted with a permission of MDPI, Basel, Switzerland under the terms and condi-
tions of the Creative Commons Attribution License. (B) Implant procedures, in vivo insertion and single-unit neural recording of an injectable neural 
probe. The re-use of this figure published in [81] was approved by Nature Publishing Group (Springer Nature). (C) A stent electrode array (middle) with 
8 electrodes to acquire neural signals in the brain vessel and pre- and post-implant images in a delivery of the stent electrode array by X-ray venography. 
This figure published in [90] is reprinted with a permission of Nature Publishing Group (Springer Nature). (D) An implantable wireless implantable re-
cording and stimulating probe for bidirectional BMI instruments. The reprint of this figure in [96] was permitted by MDPI, Basel, Switzerland under the 
terms and conditions of the Creative Commons Attribution License.



461www.enjournal.orghttps://doi.org/10.5607/en.2018.27.6.453

Implantable Neural Probes for BMI

advantageous due to its small size and ability for remote charging.
Researchers have also investigated the application of ultrasound 

technology as a carrier of neural signals from medium-depth tis-
sue. Such “neural dust” systems are advantageous in that they are 
able to send and receive information non-invasively in certain ar-
eas of the brain. Seo et al. investigated a neural dust system consist-
ing of recording electrodes, a piezoelectric ultrasound generator, 
drive electrodes, and a wireless cortical recording platform [97]. 
In this system, an external ultrasound probe sends out an echo 
with a specific waveform, following which a reflected wave (i.e., 
neural signal) is emitted from the system. This neural signal can 
be isolated by examining the specific waveform transmitted and 
the backscattered signal. Preliminary studies designed to measure 
neural activity in the peripheral nervous system using a neural 
dust system in rats have demonstrated the potential of these sys-
tems for application in BMI technologies.

We anticipate that advancements in the following areas will 
promote the use of wireless neural electrodes in practical BMI 
applications: ultra-low power consumption, high signal-to-noise 
ratio, sufficient maximum communication distance for receiving 
and transmitting data, and channel number [76, 98]. Furthermore, 
wireless BMI systems must be designed to prevent malfunctions 
by erasing noise from the external environment, to have an ef-
ficient means of changing the battery, and to function for a long 
period of time on single charge [99, 100].

MULTI-MODAL NEURAL PROBES TO MEASURE BOTH ELEC-
TRICAL AND OPTICAL SIGNALS

While direct electrical measurements can be obtained using im-
plantable neural probes as described in previous sections, optical 
measurement methods are also utilized to record neural activity 
at the level of single neurons and neuronal assemblies. Optical 
methods rely on indices such as the influx of calcium ions (Ca2+) 
and changes in voltage. Since changes in Ca2+ can represent neural 
activity, several optical indicators have been applied in studies 
ranging from in vitro cellular assays [101, 102] to in vivo investiga-
tions in freely moving animals [103]: a bioluminescent Ca2+ prob-
ing protein (Aequorin) [104], chemical Ca2+ indicators (calcium 
green, fura-2 etc.) [105, 106], genetically encoded Ca2+ indicators 
based on a single fluorophore [107] and Förster resonance energy 
transfer (FRET) [108]. In addition, voltage-sensitive optical dyes 
can be used to identify transient changes in action potentials in 
neurons [109-111]. In addition, voltage-sensitive optical dyes 
can be used to identify transient changes in action potentials in 
neurons. Indeed, researchers have developed optical implantable 
neural probes for use in freely behaving animals by combining 

fiberoptic and wireless communication technologies. For instance, 
Murayama et al. designed a miniaturized neuro-endoscopic 
periscope using graded-index (GRIN) lenses and micro-prism 
coupled fibers. This periscope was used to study dendritic Ca2+ 
changes in freely moving mice [112]. Ghosh et al. introduced a 
prototype of a miniaturized wide-field fluorescence microscope 
with which they could measure neural activity when the device 
was mounted on the head of freely moving animals [113]. Besides, 
optical neuro-stimulations were exercised since the discovery of 
optogenetics stimulation. Furthermore, optical devices can be used 
for stimulation purposes as well: In the case of Channelrhodopsin 
(ChR), trans-membrane pores are opened when ChR-integrated 
ion channels absorb blue light at a wavelength of 470 nm, causing 
ions to flow into the neurons [114-116]. Preclinical studies have 
confirmed that fiber-coupled illumination devices function well 
in freely moving animals. Aravanis et al. designed a fiber-coupled 
optical neural interface guided by ChR2-mCherry fluorescence 
images for use in rats [117]. Several research groups have also 
developed prototypes of wirelessly integrated LED-based implant-
able neural stimulation modules for use in freely moving animals 
[118-120].

Electrical and optical signals can be measured without interfer-
ence from one another because their frequency domains are dif-
ferent. For this reason, several prototypes of multi-modal neural 
probes have been developed to measure both electrical and optical 
activity in preclinical studies [121, 122]. LeChasseur et al. devel-
oped a micro-probe, which consists of a dual-core optical fiber 
and a 50-μm electrical wire probe for recording both electrical and 
optical neural activities, as illustrated in Fig. 6A [123]. In a compar-
ative study, the authors recorded optical and electrical neural sig-
nals from the same neuron in rats, observing that the two modali-
ties were complementary and highly correlated with one another. 
Anikeeva et al. developed an optetrode, which is composed of a 
200-μm single-channel optical fiber and a tetrode, to investigate 
optical stimulation and neural responses (recorded by the tetrode), 
as described in Fig. 6B [124]. The optetrode detected multi-unit 
neural activity and transient changes when optical stimulation was 
provided at different frequencies. Voigts et al. investigated an ultra-
light weight neural probe (i.e., FlexDrive) consisting of a single-
core optical fiber and 16, 32, or 64-channel electrodes for studies 
of multi-dimensional neural responses to optogenetic stimula-
tion [125]. Kwon and colleagues combined a transparent ECoG 
electrode array and an optical illumination device for optogenetic 
stimulation [126]. In another preliminary in vivo  study, the au-
thors proposed a prototype of a multi-modal neural probe termed 
the Opto-μECoG array, which exhibits sufficient biocompatibility. 
Several researchers have also introduced variations of the Utah 
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array combined with miniaturized optical components to acquire 
high-resolution electrical neural signals following optical neuro-
stimulation [127, 128]. Similarly, previous studies have reported 
the success of BMI systems based on optogenetic neuromodula-
tion and electrical neural recordings in small animals [129-135]. 
For example, Liu et al. developed a compact optogenetics system 
using graphene electrodes to reduce artifacts [136]. We expect that 
multi-modal BMI systems will evolve toward more specific ap-
plications when the safety and stability of both probes have been 
demonstrated.

Based on previous research, we expect the following benefits to 
be associated with the use of multi-modal neural probes that com-
bine optical and electrophysiological modalities in BMI systems. 
When using neural probes to record both optical and electrical 
neural signals, cross-validation of fidelity between the two signals 
can increase signal reliability. In particular, since the noise sources 
of the two signals are likely to be different, one signal can be used 
when another signal is perturbed. In the context of BMI applica-
tions, multi-modal probes may be useful when the patient is in 
an electromagnetically noisy environment. Such probes may also 
be advantageous for advanced BMI systems that require precise 
stimulation and minimal interference between signals. However, 
few optogenetic genes have been identified and cleared for use in 
humans due to safety concerns [137, 138]. Genetic engineering 

remains quite challenging due to its unknown long-term impact 
on humans, although it is expected that these technologies will be 
utilized in various BMI systems once issues regarding safety and 
stability have been addressed.

NEURAL PROBES WITH ADVANCED MATERIALS

In order for successful implantation in the human brain, neural 
probes must exhibit sufficient biocompatibility, safety, stability, 
and electrical performance. However, electrodes composed of 
classic materials such as iridium oxide and platinum are limited in 
their ability to meet these conditions. To overcome these limita-
tions, advanced materials with special functions and properties 
including metals, inorganic materials, and polymers have been ap-
plied to the development of neural probes.

Carbon nanotubes (CNTs) are cylindrically structured allotropes 
of carbon that are stronger and have better elasticity and electri-
cal properties than more traditional materials [139, 140]. As such, 
various studies have aimed to develop neural probes using CNTs. 
Wang et al. designed a microelectrode array composed of CNTs, 
reporting significant improvements in the charge injection limit 
when CNT electrodes were used to stimulate cultured hippocam-
pal neurons [141]. Keefer et al. developed a CNT coating to en-
hance charge transfer in microelectrode arrays [142]. In this study, 

Fig. 6. (A) A multimodal microprobe with optical and electrical measurements of neural activities. The multimodal probe consisted of a dual-core opti-
cal fiber, which excited fluorescent indicators and collected emitted signals, and an electrical wire to record electrical activities in neurons. This figure in 
[123] is reprinted with a permission of Nature Publishing Group (Springer Nature). (B) A schematic of an optetrode, which consisted of a single optical 
fiber with 200 μm core diameters for optogenetic stimulations and a tetrode to record neural activities and changes when the optical stimulation occurs. 
The re-use of this figure published in [124] was approved by Nature Publishing Group (Springer Nature).
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the authors obtained stronger neural activity from CNT-coated 
electrodes in the primate visual cortex, with an improvement fac-
tor of 7.4 dB (Fig. 7A). Guitchounts et al. developed 16-channel 
carbon fiber neural probes with which they could acquire long-
term chronic neural signals due to the strength and stability of the 
carbon fiber [143]. In addition, previous studies have demonstrat-
ed the successful integration of a soft CNT fiber microelectrode 
array in long-term bidirectional neural interfaces. Such findings 
suggest that this system can be used to develop high-performance 
and biocompatible BMI devices and neuroprosthetic instruments 
[144]. Graphene, a two-dimensional carbon allotrope, can also be 
utilized to improve the performance of neural probes due to its 
mechanical stiffness, flexibility, and superior electrical properties 
[145]. For instance, Chen et al. designed flexible graphene micro-
probes that can be applied to record electrical signals associated 
with neural or cardiac activity [146]. Graphene-based flexible elec-
trodes have also been fabricated to acquire ECoG signals by im-
proving contact with the brain. Additional studies have indicated 
that graphene can be used to investigate changes in neural activity 
due to optogenetic stimulation due to its high transparency [147]. 
Similarly, Kuzum et al. developed a graphene electrode array with 
high flexibility and transparency: They acquired electrical neural 
signals and fluorescence images indicating changes in calcium 
flux using the same electrode [148]. Furthermore, graphene-based 
electrodes can be integrated into multi-functional neural probes. 
For instance, Liu et al. introduced neural probes that consist of 
graphene-oxide and gold-oxide electrodes, as illustrated in Fig. 

7B [149]. This novel probe can be used to obtain measurements 
of both electrophysiological neural signals and electrochemical 
information via cyclic voltammetry. Indeed, this type of electrode 
can be used to monitor neural activity and various electrochemical 
changes after the induction of brain damage due to photo-throm-
bosis. Apollo et al. also investigated the application of needle-type 
flexible neural probes made from graphene oxide for use in bidi-
rectional neural interfaces [150].

Due to the development of efficient techniques for fabricating 
and manufacturing nanoscale structures and particles, nanotech-
nology has quickly become relevant to biological and biomedical 
applications Indeed, nanoscale structures and particles have been 
applied to improve neural probes. Park et al. developed a nanopo-
rous platinum electrode that can be used to record neural signals 
[151]. In this study, the authors reported that the nanoporous elec-
trodes were associated with improvements in electrical proper-
ties, impedance, and charge injection limits when compared with 
commercially available alternatives such as platinized platinum 
and iridium oxide electrodes. Other studies have demonstrated 
the enhanced biocompatibility of gallium phosphide nanowire 
electrodes [152]. These nanowire electrodes were tested in the rat 
primary somatosensory cortex. Abidian and colleagues introduced 
nanostructured polymer-coated conducting electrodes with en-
hanced electrical properties, improved mechanical adhesion, and 
better neuronal attachment capabilities [153]. Piret et al. developed 
boron-doped diamond electrodes with three dimensionally fab-
ricated nanostructures using multiple semiconductor fabrication 

Fig. 7. (A) Carbon nanotubes coated microelectrode arrays to improve electrical property in recording neural activities. Left plots illustrates local field 
potential and power spectral density with frequencies in ranging from 1 to 300 Hz comparing microelectrodes coated with carbon nanotube to ones 
without coating. The reprint of this figure in [142] was permitted by Nature Publishing Group (Springer Nature). (B) A schematic of in vivo experimen-
tal setup in a study recording neural activities and electrochemical changes during photo-thrombosis. The neural probes used in this setup consist of 
graphene-oxide and gold-oxide combined electrodes. The figure published in [149] is reprinted with a permission of American Chemical Society.
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techniques [154]. Relative to conventional boron-doped diamond 
electrodes, the nanostructured electrodes offer higher sensitivity 
to neural activity while maintaining stability and biocompatibility, 
suggesting that these electrodes can be applied in the development 
of highly sensitive BMI systems and rehabilitation instruments.

CONCLUSIONS

In this report, we have reviewed the application of current multi-
channel neural probes (i.e., the tetrode, Utah array, and Michigan 
probe) to BMI systems, as well as developments regarding next-
generation neural probes. When comparing the electrodes cur-
rently in use, it is important to choose the proper neural probe 
based on the function and purpose of the BMI application. For 
instance, for measurement and stimulation of pyramidal neurons 
in deep sulcus areas—which are known to directly control fine 
muscles such as those in the hand—a neural probe with a longer 
shank is required. We also discussed several developing neural 
probes, which aim to improve upon the electrical properties, bio-
compatibility, and reliability of current devices using multi-modal 
approaches. If high-density electrodes with improved biocompati-
bility can be developed, flexible ECoG systems can be more widely 
applied in both clinical and preclinical BMI studies. Although 
stent electrodes are currently at the proof-of-concept stage, their 
minimal invasiveness suggests that they can replace many other 
methods for acquiring neural signals in the future. Safety concerns 
represent the greatest challenge for BMI systems based on optoge-
netic stimulation. The application of new materials, high-resolu-
tion integrated technologies, and nanotechnology will ultimately 
contribute to the development of high-performance neural probes 
and BMI systems.

While the long-term fidelity of neural recordings is critical for 
success in BMI systems, several subsequent stages of processing 
are critical for ensuring the efficiency of these systems (Fig. 1). 
Decoding algorithms that allow for accurate analysis of acquired 
neural signals and encoding techniques that transfer outward 
information to the brain are also important components of a BMI 
system [155-158]. High-speed computing and wireless signal pro-
cessing are also critical for the development of high-performance 
BMI systems that can be applied in real-world settings.

Perhaps the most important issue facing developers is the bio-
compatibility and mechanical suitability of implantable neural 
probes. Advancements in material science and mechanical tech-
niques will aid in developing strategies for minimizing brain 
scarring while maintaining adequate electrode contact [159, 160]. 
Assessments of signal quality and side effects should be performed 
in both in vitro and in vivo systems (e.g., non-human primates) to 

determine the practical applications of novel BMI systems prior to 
use in humans. For these reasons, it is also necessary to choose ap-
propriate packaging techniques to enhance the biocompatibility of 
implantable neural probes.

Mass production and security concerns should also be addressed 
in the development of neural probes for commercial and real-
world use. Because the electrode is inserted into the brain, proper 
mass manufacturing technologies are required, without sacrificing 
the quality of the probe from production to packaging. Thus, sys-
tematic inspection methods should also develop. Several security 
experts have cautioned that information leakage may occur when 
using BMI systems [161, 162]. Therefore, establishing technolo-
gies to prevent information leakage is another issue that must be 
addressed when considering the practical applications of BMI sys-
tems. In conjunction with technological advancements, consensus 
regarding social and ethical concerns will lead to widespread utili-
zation of implantable neural probes and BMI systems. 
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