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Machine learning-based myoelectric control is regarded as an intuitive paradigm,

because of the mapping it creates between muscle co-activation patterns and prosthesis

movements that aims to simulate the physiological pathways found in the human

arm. Despite that, there has been evidence that closed-loop interaction with a

classification-based interface results in user adaptation, which leads to performance

improvement with experience. Recently, there has been a focus shift toward continuous

prosthesis control, yet little is known about whether and how user adaptation affects

myoelectric control performance in dexterous, intuitive tasks. We investigate the effect of

short-term adaptation with independent finger position control by conducting real-time

experiments with 10 able-bodied and two transradial amputee subjects. We demonstrate

that despite using an intuitive decoder, experience leads to significant improvements in

performance. We argue that this is due to the lack of an utterly natural control scheme,

which is mainly caused by differences in the anatomy of human and artificial hands,

movement intent decoding inaccuracies, and lack of proprioception. Finally, we extend

previous work in classification-based and wrist continuous control by verifying that offline

analyses cannot reliably predict real-time performance, thereby reiterating the importance

of validating myoelectric control algorithms with real-time experiments.

Keywords: surface electromyography, myoelectric control, myoelectric prostheses, short-term adaptation,

machine learning

INTRODUCTION

State-of-the-art commercial prosthetic hands exhibit hardware capabilities that could potentially
allow their users to independently control individual fingers. However, this feature is almost
never utilized; instead, most current prosthetic systems still employ the conventional amplitude-
based, dual-site electromyogram (EMG) mode switching paradigm for grip selection and actuation
(Farina et al., 2014). Due to using a highly-non-intuitive control interface, the efficacy of this
method relies on user experience gathered during daily interaction with the device. It has been
previously shown, and is currently well-accepted, that humans are capable of greatly improving
their control of mode switching myoelectric interfaces within only a few days of training
(Bouwsema et al., 2010; Clingman and Pidcoe, 2014).

Moving toward more natural interfaces, a large body of research has investigated the potential
of pattern recognition methods for providing users with the ability to directly access desired
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control modes, such as hand grips and/or wrist functions. The
idea of EMG signal classification for prosthetic control has
been around for almost half a century (Herberts et al., 1973)
and has recently found its way into commercial adoption1.
Although classification-based control is regarded as an intuitive
scheme, there has been evidence that experience can still
lead to substantial performance improvement (Bunderson and
Kuiken, 2012; Powell et al., 2014; He et al., 2015; Hargrove
et al., 2017). This can be attributed to various causes, for
example, an increase in class separability (Bunderson and
Kuiken, 2012) and movement repeatability (Powell et al., 2014),
even in the absence of any form of feedback (He et al., 2015).
Recently, a clinical study involving transhumeral amputees
having undergone targeted muscle reinnervation reported a
significant increase in classification-based myoelectric control
performance within 2 months of daily use (Hargrove et al., 2017).

The grip classification approach can offer a remarkable
improvement of the intuitiveness and ease of use of the prosthetic
device. However, it suffers from two main limitations: (1)
it results in severe under-actuation of the prosthesis, which
dramatically limits its functionality, as the user can only have
access to a set of pre-determined modules; and (2) it is sequential
in nature, that is, a single class of movement can be active at a
time, as opposed to the natural continuous and asynchronous
finger movement exhibited by the human hand. One way of
enhancing the dexterity of powered myoelectric prostheses is
via continuous and simultaneous control of multiple degrees of
freedom (DOFs) (Fougner et al., 2012). Arguably, the primary
focus of continuous myoelectric control has previously been on
restoring wrist function (Hahne et al., 2014; Jiang et al., 2014;
Muceli et al., 2014; Smith et al., 2014). Nevertheless, over the
last decade several groups have also addressed the challenge of
using surface EMG signals to reconstruct kinematic variables
(e.g., position or velocity) of independent finger movement, both
offline (Afshar andMatsuoka, 2004; Smith et al., 2008; Ngeo et al.,
2014; Krasoulis et al., 2015b; Xiloyannis et al., 2017) and in real-
time (Smith et al., 2009; Cipriani et al., 2011; Ngeo et al., 2013).
As compared to non-invasive methods, intramuscular recordings
offer the advantage of lower level of muscle cross-talk (Birdwell
et al., 2013), hence making it possible to create multiple one-to-
one mappings between specific muscles and prosthesis degrees
of actuation (DOAs). This opportunity has been explored in the
context of controlling both virtual (Birdwell et al., 2015) as well
as prosthetic (Cipriani et al., 2014) hands. Besides finger position
and velocity decoding, individual fingertip forces have also been
reconstructed offline (Castellini et al., 2009; Nielsen et al., 2011)
and in real-time (Gijsberts et al., 2014; Gailey et al., 2017; Patel
et al., 2017) using surface (EMG) signals.

Continuous myoelectric control strategies, which are often
referred to as proportional (Fougner et al., 2012), are typically
intuitive, that is, they operate based on physiological associations
between muscle (co)-activation patterns and prosthesis DOAs.
They usually require an initial phase of data collection for subject-
specific model training. A promising alternative is based on user
adaptation (Dyson et al., 2018), whereby muscle signals control

1https://www.coaptengineering.com/

the prosthesis DOAs using pre-defined, subject-independent
mappings. This approach heavily relies on user adaptation
taking place during closed-loop control, therefore the provision
of continuous feedback (e.g., visual) during user training is
necessary. There has been increasing evidence that humans are
able to develop novel task-specific muscle synergies, that is,
muscle co-activation patterns, to achieve high-level performance
in a variety of tasks, including two-dimensional cursor position
control (Nazarpour et al., 2012; Pistohl et al., 2013, 2015; Antuvan
et al., 2014; Dyson et al., 2017, 2018), prosthetic finger position
(Pistohl et al., 2013), and high-dimensional robotic arm control
(Ison and Artemiadis, 2015; Ison et al., 2016). Notably, it has
been found that such synergistic patterns can be learnt even
when they are not intuitive from a physiological perspective, for
instance, due to requiring the co-activation of antagonist muscles
(Nazarpour et al., 2012).

In comparison with non-intuitive interfaces, whereby an
inverse model has to be learnt from scratch, the effect of user
experience on myoelectric control performance when using an
intuitive, regression-based approach is much less understood.
In the context of 2-DOF continuous wrist control, a previous
study showed that while three machine learning algorithms
yielded statistically different offline decoding accuracies, the
performance of the three algorithms was comparable during real-
time myoelectric control (Jiang et al., 2014). Additionally, only
weak, mainly non-significant correlations were observed between
offline and real-time control performance measures. These
findings support the view that user adaptation mechanisms that
take place during closed-loop interaction affect ultimate real-time
control performance, thereby questioning the extent to which
offline myoelectric control studies can inform clinical translation
of advanced upper-limb prostheses. Similar findings have been
also reported in the context of myoelectric classification (Ortiz-
Catalan et al., 2015; Vujaklija et al., 2017). Furthermore, a study
showed that real-time, regression-based prosthetic wrist control
might be less susceptible to perturbations, for example, due
to noise in EMG signals, than its offline decoding counterpart
(Hahne et al., 2017). This observation provides evidence that
humans can user error correction mechanisms to compensate
for decoding inaccuracies during closed-loop interaction with
myoelectric interfaces. With regard to prosthetic finger control,
several studies have attempted to push the boundaries of
offline decoding accuracy (Ngeo et al., 2014; Xiloyannis et al.,
2017). However, substantially less effort has been made toward
understanding whether and in what manner user adaptation can
affect real-time control performance.

In this work, we investigate the effect of user adaptation
in continuous prosthetic finger control in able-bodied and
transradial amputee subjects. We hypothesize that however
intuitive a myoelectric task might be, experience gathered during
interaction with the interface would still lead to performance
improvement. We evaluate our hypothesis using two intuitive
finger control schemes, namely, EMG-based finger position
control and teleoperation with an instrumented data glove.
Additionally, we investigate the effect of user experience on
the power of the recorded EMG signals and the variability of
the controllable DOAs. Finally, we extend previous work on
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myoelectric classification and continuous wrist control (Ortiz-
Catalan et al., 2015; Vujaklija et al., 2017), by demonstrating
that it is not possible to reliably predict real-time prosthetic
finger control performance solely based on the outcomes of
offline decoding analyses. To the best of the authors’ knowledge,
this is the first study to systematically demonstrate the positive
impact of short-term adaptation, achieved through biofeedback
user training, on intuitive, dexterous prosthetic finger control
both with EMG-based decoding, as well as during robotic hand
teleoperation with a data glove.

MATERIALS AND METHODS

Participant Recruitment
Ten able-bodied (ninemale, one female; all right-hand dominant;
median age, 26.5 years) and two male, right-hand transradial
amputee subjects were recruited. Both amputees were right-hand
dominant prior to amputation. Some of the able-bodied (5 out of
10) and both amputee participants had previously taken part in
classification-based myoelectric control experiments (Krasoulis
et al., 2017).

Hardware and Signal Acquisition
For the able-bodied group, 16 Delsys Trigno

TM
sensors

(Delsys, Inc.) were placed on the participants’ right forearm
arranged in two rows of eight equally spaced sensors, without
targeting specific muscles. The two rows were placed 3 and
5.5 cm, respectively, below the elbow. Photographs showing
electrode placement for an able-bodied participant are shown in
Figures 1A,B. Using a similar configuration, 13 and 12 sensors
were used, respectively, for the two amputee participants, due
to limited space availability on their remnant limb (right limb
in both subjects). Prior to sensor placement, participants’ skin
was cleansed using 70% isopropyl alcohol. Elastic bandage was
used to secure the sensor positions throughout the experimental
sessions. Following sensor placement, the quality of all EMG

channels was verified by visual inspection. The sampling
frequency of EMG signals was set to 1,111 Hz.

An 18-DOF CyberGlove II data glove (CyberGlove Systems
LLC) was used to record hand kinematic data from the
participants’ left hand (Figures 1C,D). For each participant, the
glove was calibrated prior to data collection using dedicated
software provided by the manufacturer. The sampling rate of
glove data was 25 Hz.

For the real-time control experiments, we used a right model
of the IH2 Azzurra hand (Prensilia s.r.l.), which is an externally-
powered, underactuated (11 DOFs, 5 DOAs) anthropomorphic
hand. It comprises 4 intrinsic motors controlling flexion and
extension of the five digits (the ring and little fingers are
mechanically coupled) and an additional motor controlling
thumb rotation. The robotic hand is shown in Figures 1E,F.

Experimental Design
Participants sat comfortably on an office chair and rested both
arms on a computer desk. Each participant completed one
experimental session, which comprised two main phases: (1)
initial data collection, and (2) real-time robotic hand control. Each
experimental session lasted around 140 min, which included:
skin preparation, electrode positioning, and signal inspection (20
min); initial data collection (60 min); short interval (20 min); and
real-time control of the robotic hand (40 min).

Initial Data Collection
In the first part of the experiment, participants were asked to
reproduce a series of motions instructed to them on a computer
monitor. Nine exercises were selected for data collection
ranging from individuated-finger to full-hand motions. The nine
motions comprised: thumb flexion/extension, thumb abduction/
adduction, index flexion/extension, middle flexion/extension,
ring/little flexion/extension, index pointer, cylindrical grip,
lateral grip, and tripod grip (Figure S1). All participants were
asked to perform bilateral mirrored movements with both their
arms resting on a computer desk.

FIGURE 1 | Experimental setup. Surface EMG electrodes were placed on subjects’ forearm below the elbow in two rows of equally spaced electrodes. (A) Palmar

and (B) dorsal views of the forearm. Refer to main text for details on number of electrodes used for able-bodied and amputee participants. (C,D) Bilateral mirrored

movement training. Able-bodied and amputee participants shown during initial data collection. Muscle activity was recorded from the participants’ right forearm (i.e.,

the remnant limb for amputees), whereas hand kinematic data were recorded from the participants’ left hand with an 18-DOF data glove. (E,F) Real-time posture

matching task. Able-bodied and amputee participants shown while they modulate their muscle activity to control the finger positions of the robotic hand. The target

postures for the shown trials were (E) full cylindrical grip and (F) half index flexion.
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We recorded three datasets (i.e., separate blocks of trials) for
each participant during this phase of the experiment: the first
two (training and validation sets) comprised 10 repetitions of
each motion, and the third one (testing set), only two. Each
motion execution lasted∼7 s and at the end of each trial subjects
were instructed to return to the rest pose which corresponded to
complete muscle relaxation (shown in Figure S1A). Succeeding
trials were interleaved with intervals of 3 s and participants were
also given a 10 min break after the completion of each block
of trials.

Signal Pre-processing
We used a sliding window approach to process the EMG signals.
The length of the window was set to 128 ms with an increment of
50 ms (60% overlap). The following time-domain features were
extracted from the recorded EMG channels: Wilson amplitude,
4th-order auto-regressive coefficients, waveform length, log-
variance, and slope sign change (Boostani and Moradi, 2003;
Hahne et al., 2014). The columns of the design (i.e., feature)
matrices were subsequently standardized via mean subtraction
and inverse standard deviation scaling. Feature means and
standard deviations were estimated using training data only.

For the hand kinematic data that were recorded with
the data glove, we computed the mean value within
the processing window for each DOF individually. The
calibrated glove measurements were converted into digit
positions for the prosthetic hand using a linear mapping
(see Supplementary Methods). The columns of the target
matrices containing the prosthetic hand joint positions
were finally normalized in the range [0, 1], where yj = 0
corresponds to full extension and yj = 1 to full flexion of the jth
DOA, respectively.

Model Training, Prediction
Post-processing, and Hyper-Parameter
Optimization
Model training took place during the short resting interval
between the initial data collection and real-time control
evaluation. To decode finger positions from muscle activity, we
deployed a regularized version of the Wiener filter, implemented
using auto- and cross-correlation matrices (Perreault et al.,
1999), which we have previously used to reconstruct finger
position trajectories from myoelectric data offline (Krasoulis
et al., 2015a,b). We have shown in previous work that the
generalization of this decoder is comparable to that of non-
linear regression algorithms when tested on movements outside
the training set (Krasoulis et al., 2015b). The Wiener filter is a
classical signal processing method for estimating a target variable
using linear time-invariant filtering (e.g., spatial or temporal).
In other words, at time instance n, each input xd (i.e., EMG
feature) is convolved with a finite impulse response function to
produce an output y (i.e., digit position of a single DOA of the
prosthetic hand):

y [n] =

D
∑

d=1

M−1
∑

m=0

hd [m] xd [n−m] , (1)

where hd [m] accounts for the contribution of the input d at time
instance m, xd [n−m] is the activation of the input d at time
n−m,M is the filter length, and we also assume a finite number
of samples n = 1, . . . ,N. We set the length of the linear filters
to 300 ms, which corresponds to including at each time step
M = 6 previous time lags, assuming a fixed window increment
of 50 ms. The number of EMG electrodes used for decoding
varied across subjects and was based on a sequential selection
algorithm (described below). When the full set of sensors was
used, the input dimensionality wasD = 672 (i.e., 7 EMG features
/ (electrode × time bin) × 16 electrodes × 6 time bins). The
output dimensionality was K = 5, that is, the number of DOAs
of the robotic hand. For covariance matrix estimation, we used
L2 regularization to avoid inversion of potentially ill-conditioned
matrices due to the high dimensionality of the input space.

We post-processed predictions using exponential smoothing
to ensure smooth digit trajectories. We implemented this in the
time-domain as follows:

ỹj [n] = α · yj [n]+ (1− α) · ỹj [n− 1] , (2)

where yj [n] and ỹj [n] denote, respectively, the raw and smoothed
predictions of the jth DOA at time step n, and α is the smoothing
parameter, which is constrained by 0 ≤ α ≤ 1. Smaller values of
α result in stronger smoothing, that is, a smaller cutoff frequency
when smoothing is viewed as a low-pass filter, but also increase
the prediction response latency.

We performed three types of model selection (i.e., hyper-
parameter tuning) for each participant during the training
phase: sensor selection, regularization, and smoothing parameter
optimization. Models were initially trained using data from the
training set only. Model selection was carried out by means
of maximizing performance on the validation set. Following
parameter optimization, the training and validation sets were
merged and used to train final models. The test set was only used
to evaluate and report offline performance of the final models.

Offline reconstruction accuracy was assessed using the
multivariate (R2) metric defined as:

R2MV = 1−

∑K
k=1

∑N
n=1

(

yk,n − ŷk,n
)2

∑K
k=1

∑N
n=1

(

yk,n − ȳk
)2

, (3)

where K denotes the dimensionality of the target variable
(in our case K = 5), N is the number of samples in the
measurement/prediction vector, yk,n and ŷk,n are the nth observed
and predicted values of the kth output variable, respectively, and
ȳk denotes the sample mean of the kth output variable.

For sensor selection, a standard sequential forward method
was used (Pudil et al., 1994). That is, the selection algorithm
started with an empty set and at each iteration the sensor that
yielded the highest reconstruction accuracy improvement was
added to the pool. The algorithm terminated execution when
the inclusion of any remaining sensors caused a decrease in
average performance. The number of used sensors varied from
8 to 16, with a median value of 12. To optimize the regularization
parameter λ of the Wiener filter, a search was performed in the
log-space

{

10−6, 10−5, . . . , 101
}

using a factor (i.e., multiplicative
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step) of 10. Finally, the exponential smoothing parameter α

(Equation (2)) was optimized via linear search in the range

[0, . . . , 1] with a step size of 0.01. The three model selection
steps were performed sequentially in the following order: sensor
selection, λ optimization, and α optimization. In other words,
the subset of sensors was firstly identified; using the selected
subset, the regularization parameter λ was tuned; finally, using
the selected sensor subset and chosen value for λ, the smoothing
parameter α was optimized.

Real-Time Control and Evaluation
A real-time, biofeedback, posture matching task was designed to
assess the efficacy of the regression-based control scheme and
provide insight into the effect of user practice on prosthetic
finger control. To that end, two scenarios were investigated:
in EMG control mode, participants were required to modulate
their muscle activity to control the prosthetic hand by making
use of the regression model; in glove control mode, participants
teleoperated the hand using the data glove worn on their
contralateral hand, that is, the intact limb for the amputee
participants. The glove control mode was included for two
reasons: to provide an estimate of the upper-bound of prosthetic
control performance for the designed experimental task (i.e.,
benchmark); and to investigate whether user practice leads to
performance improvement during prosthetic finger control with
a direct, natural control interface.

Participants were presented with a series of target postures
on the screen and were instructed to control the hand to
match the desired postures as closely as possible. Image prompts
were only used at this stage, as opposed to the training data
collection phase, where participants were instructed to follow
video prompts. During the task, the robotic hand was connected
to a base stand placed on the surface of the desk and sitting
in front of the participant (Figures 1E,F). Nine hand postures
were included, each of them with two variations, half and full
activation. Therefore, the total number of postures in the real-
time experiment was 18. The included hand postures were:
thumb abduction, thumb flexion, index flexion, middle flexion,
ring/little flexion, index pointer, cylindrical grip, lateral grip, and
pinch grip (Figure S2).

At the start of each trial, the participants were presented with
a pair of static pictures providing front and side views of the
desired posture. An audio cue (waveform, sine wave; frequency,
400 Hz; duration, 500 ms) was used to signal the initiation of the
trial. Participants were then given 3.5 s to drive the prosthetic
hand into the desired posture. At the end of this period, a second
audio cue (waveform, sine wave; frequency, 800 Hz; duration,
500 ms) was used to signal the initiation of the evaluation phase
of the trial, which lasted 1.5 s. During the evaluation phase,
participants were instructed to hold the hand in the performed
posture. At the end of the evaluation phase, the hand was reset
to its initial posture (i.e., fully open) signaling the end of the
trial. Pictures illustrating the real-time posture matching task are
shown in Figures 1E,F for two participants, one able-bodied and
one amputee.

At the end of each trial, participants received a score
characterizing their performance. This score was based on the

average mean absolute error (MAE) between the target and
performed postures during the evaluation phase (i.e., the last 1.5
s) of the trial. Let yyy and ŷyy denote K-dimensional vectors in a real
vector space. In our case, the two vectors represent the target and
performed postures, respectively, of the prosthetic hand at a given
time step and K = 5 is the number of DOAs of the hand. The
MAE is defined as:

MAE =
1

K

∣

∣

∣

∣yyy− ŷyy
∣

∣

∣

∣

1
=

1

K

K
∑

j=1

∣

∣yj − ŷj
∣

∣ , (4)

where yi and ŷi denote, respectively, the target and true positions
of the jth DOA. The evaluation phase lasted for 1.5 s, and a finger
position update was made every 50 ms, that is, the increment
time of the sliding window. Thus, there were N = 300 distance
samples associated with each trial. The average distance during
the evaluation phase of a trial was estimated by computing the
median across the samples of the population.

To provide the participants with an intuitive performance
measure for each trial, MAEs were transformed into scores in
the range of 0 to 100%. This transformation was achieved as
follows: firstly, a baseline average MAE score between the target
posture and random predictions was established by simulating
106 random predictions uniformly sampled in the range [0, 1];
the normalized score was then computed as:

normalized score = max

{

0,

(

1−
MAE

MAEr

)}

× 100%, (5)

where MAE denotes the population average (i.e., median) MAE
during the evaluation phase, and MAEr is the pre-computed,
average random prediction error for the specified posture. This
transformation ensured that a perfect reproduction of the desired
posture would correspond to a 100% score, whereas a randomly
performed posture would yield a score close to 0%. Negative
scores were not allowed by the max operation. The random
seed was controlled during the experiments to ensure the use of
identical random predictions for all participants.

The posture matching task was split into several blocks.
Within each block, all 18 postures were presented to the
participants exactly once in a pseudo-randomized order. Each
participant performed six blocks for each control mode (i.e.,
EMG and glove control, see Results section) therefore the total
number of trials for each participant was 108 (i.e., 6 blocks
× 18 trials/block). The execution of each block lasted ∼3
min. At the end of block 3, participants were given a 1 min
rest. The stimulus presentation sequence was the same for all
participants, but the order of the two control modes was counter-
balanced across the two participant groups (i.e., able-bodied
and amputee).

Dimensionality Reduction Analysis
Dimensionality reduction analysis was performed by using
principal component analysis (PCA) on the envelopes of the
EMG signals. EMG envelopes were computed by using a sliding
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FIGURE 2 | Offline finger position reconstruction. Sample test set predictions shown for the five DOAs of the robotic hand for (A) an able-bodied and (B) an amputee

subject. The shown segments of activity correspond to two repetitions of each of the movements included in the calibration phase, in the following order: thumb

flexion/extension, thumb abduction/adduction, index flexion/extension, middle flexion/extension, ring/little flexion/extension, index pointer, cylindrical grip, lateral grip,

and tripod grip. R2, coefficient of determination.

window approach (length 128 ms; window increment 50 ms)
and extracting the mean absolute value within the window. All
EMG electrodes were used in the analysis, regardless of whether
they were used for decoding, therefore the dimensionality of
the problem was equal to the total number of electrodes used
for each participant (i.e., 16 for able-bodied participants, 13 and
12 for the first and second amputee subjects, respectively). To
compare principal components (PCs) extracted from different
experimental blocks, the absolute value of the cosine similarity
was used, since the sign of PC directions was of no interest; in
other words, two identical PC vectors with opposite signs were
considered equivalent. The cosine similarity between two vectors
aaa and bbb is defined as:

similarity = cos(θ) =
aaabbb

‖aaa‖
∥

∥bbb
∥

∥

. (6)

To compare PCs between two different blocks, the PCs of the
blocks were first matched in terms of highest cosine similarity.

The dimensionality reduction analysis was performed in Python
using the scikit-learn library (v.0.19.1) (Pedregosa et al., 2011).

Statistical Analysis
For each participant, single trials were pooled together and
used to compute subject-specific summaries. Depending upon
the outcomes of D’Agostino-Pearson normality tests, the subject
summaries used were either population means, for groups with
samples following normal distributions, or medians, otherwise.
The size of the summary groups equalled the total number
of participants (i.e., n = 12). Further normality tests were
used to assess the distribution of the summary group samples.
For statistical comparisons between groups, paired t-tests were
used in the case of normally distributed samples, and Wilcoxon
signed-rank tests were used otherwise. The following effect size
metrics are reported: for t-tests, the Cohen’s d metric; and for
Wilcoxon signed-rank tests, the common language effect size
(CLES). All statistical analyses were performed in Python using
the Pingouin package (Vallat, 2018).
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FIGURE 3 | Offline decoding results summary. (A) Overall reconstruction accuracy on different datasets (training, validation, and test sets) for individual subjects. The

three datasets were used, respectively, for model fitting, hyper-parameter optimization, and final testing. (B) Offline reconstruction accuracy for individual DOAs and

participants on test set. (C) Summary of reconstruction accuracy on test set for individual DOAs and comparison between able-bodied and amputee participants.

Bars, means; straight lines, medians; solid boxes, interquartile ranges; whiskers, overall ranges of non-outlier data; diamonds, outliers; AB, able-bodied; Amp,

amputee.

RESULTS

Offline Decoding Performance
Representative offline predictions of the positions of the five

DOAs of the prosthetic hand are shown in Figure 2A for an able-

bodied and Figure 2B for an amputee participant, respectively.
Both graphs show finger trajectories (i.e., normalized positions)

in the held-out testing dataset, which comprised two repetitions

of each of the nine training exercises (Figure S1).
Offline reconstruction accuracy results are summarized in

Figure 3. The multivariate R2 is shown in Figure 3A for all

participants on the three collected datasets, that is, the training,

validation, and test sets. As was to be expected, performance

on the validation and test sets was slightly inferior to that
on the training set. The average offline decoding accuracies in
the three datasets were: training set, median 0.72, range 0.19;
validation set, median 0.59, range 0.27; test set, median 0.63,
range 0.22. Figure 3B shows the test set offline accuracy for
individual DOAs and participants. The highest average decoding
accuracy was achieved for the ring/little fingers DOA (median
0.73, range 0.41) followed by the middle finger DOA (median
0.71, range 0.24). The worst performance was observed for the
thumb flexion DOA (median 0.44, range 0.45). This pattern
was observed in four out of 12 participants. Finally, an overall
summary is provided in Figure 3C, separately for the able-bodied
and amputee groups. The average accuracy scores for the two
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FIGURE 4 | Summary results for real-time experiment. (A) Individual MAE scores for EMG and glove control modes. Lower scores indicate better performance. (B)

Summary results for able-bodied and amputee groups for the two control modes. Data from all trials and postures are shown (n = 108 for each participant and control

mode). MAE, mean absolute error; EMG, electromyography.

groups were: able-bodied, median 0.63, range 0.22, n = 10;
amputee, median 0.60, range 0.12, n = 2; n refers to number of
participants in each group.

Real-Time Experiment Results
We start our analysis of the real-time control experiment by
summarizing the overall performance in Figure 4. We report
here MAE scores between target and performed postures.
A similar analysis of the closely related performance scores
presented to participants at the end of the trials is provided in the
Supplementary Material (Supplementary Results section). Not
surprisingly, glove control performance was significantly higher
than EMG control (p = 10−9, d = 6.5, n = 12; paired t-test; n
refers to total number of participants). The median MAE scores
across all participants, blocks, and trials were 0.24 (range 0.90)
and 0.11 (range 0.59) for EMG and glove control, respectively.
The average MAE scores across all blocks for the two groups
were: EMG control, able-bodied, median 0.23, range 0.90, n =

1080; EMG control, amputee, median 0.26, range 0.74, n = 216;
glove control, able-bodied, median 0.11, range 0.58, n = 1080;
glove control, amputee, median 0.12, range 0.38, n = 216; n
refers to number of single trials within each participant group and
control mode.

We now turn our attention to the effect of user practice on
performance during real-time finger control. Learning curves
for the real-time task are presented in Figure 5, where average
performance scores are plotted against the experimental block
number (ranging from one to six). In all cases, an improvement
in performance can be observed as the block number increases
(Figures 5A,B). A statistical comparison of early (i.e., 1–2) vs.
late (i.e., 5–6) blocks is provided in Figure 5C, separately for
each control mode. For this analysis, able-bodied and amputee
participants have been grouped together. For both controlmodes,
averageMAEs were significantly lower in late than in early blocks
(EMG control, p = 0.02, d = 0.612; glove control, p = 10−5, d =

2.49, paired t-tests, n = 12; n hereafter refers to total number of

participants). A one-to-one comparison of performance in early
vs. late blocks is shown in Figure 5D, where each point in the
scatter plot corresponds to a single participant and control mode.
For EMG control, the performance was higher in late blocks for
nine out of 12 participants (one out of two amputees). For glove
control, the performance in late blocks was consistently improved
for all 12 participants (some points in the plot are overlaid
and therefore not visible). Two videos showing one amputee
participant performing the first and last blocks of the real-time
posture matching task are provided as Supplementary Material

(Supplementary Movies 1, 2).
Next, we seek to investigate whether user practice can have an

effect on the user’s muscular activity. As a first step, we perform
dimensionality reduction on the recorded EMG envelopes using
PCA. The top row of Figure 6 shows the cosine similarities of
the first (Figure 6A) and second (Figure 6B) PCs between the
first and subsequent blocks. The variance explained by the first
(Figure 6C) and first two (Figure 6D) PCs extracted in block
1 is plotted against the block number in the second row of
Figure 6. In the bottom row of the (Figures 6E,F), the percentage
of variance explained in each block is shown again against the
block number, but this time the PCs used were estimated in the
same blocks. For both participant groups, a decrease in similarity
between the PCs in the first and subsequent blocks is observed
as the block number increases. Similarly, a consistent decreasing
trend is observed for the percentage of explained variance by the
first two PCs estimated in the first block of trials. When using
PCs extracted from the same block, the percentage of variance
explained is comparable across blocks.

Additionally, we compare the power of the recorded surface
EMG channels across experimental blocks. This analysis is
performed separately for the set of electrodes used for real-time
decoding and the non-used set. The results of this analysis are
presented in Figure 7A. For both groups of electrodes we observe
a small, but not significant, decrease in median EMG signal
power between early and late trials (used electrodes, p = 0.11,
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FIGURE 5 | Effect of user practice on task performance (real-time experiment). (A,B) MAE scores are plotted against the experimental block number for (A) EMG and

(B) glove control (note different y axis scales). Data for able-bodied participants are presented as means with confidence intervals. Amputee data are shown

separately for each of the two individuals. (C) Comparison of early vs. late blocks for grouped participants (able-bodied and amputee). Each block lasted 3 min and

participants were given a 1 min rest after block 3, therefore blocks 1 and 5 were ∼13 min apart. Data shown correspond to subject averages across blocks for all

participants (i.e., 10 able-bodied and two amputees). Within each block, participants replicated 18 hand postures presented to them exactly once in a

pseudo-randomized order. (D) One-to-one comparisons of early vs. late block averages for all participants. Each point in the scatter plot corresponds to a single

participant and control mode. Points, means; error bars, 95% confidence intervals estimated via bootstrapping (1,000 iterations); *p < 0.05; *** p < 0.001.

CLES = 0.632; non-used electrodes, p = 0.12, CLES = 0.636;
n = 12 in both cases, Wilcoxon signed-rank tests). Similarly,
we assess the effect of user practice on the variability of the
controllable DOAs, that is, the robotic hand finger positions.
Variability is assessed in terms of standard deviation during the
evaluation phase of the posture matching task. The results of
this analysis are presented in Figure 7C separately for EMG and
glove control. For EMG control, a significant decrease in finger
position variability between early and late blocks is observed (p =

0.01, CLES = 0.778). Conversely, for glove control, there is no
difference between early and late blocks (p = 0.84,CLES = 0.556,
n = 12,Wilcoxon signed-rank tests). One-to-one comparisons of
average EMG power and finger position variability between early
and late blocks are shown in Figures 7C,D, respectively, where
each point in the scatter plots corresponds to a single participant
and decoding condition.

Finally, we investigate whether offline decoding accuracy can
provide a reliable predictor of real-time control performance. For

this reason, we compute the average MAE for each subject across
all trials and blocks and compare this metric to the respective
offline reconstruction accuracy score for the same subject on the
test set. The results of this analysis are presented in Figure 8,
where each point in the plot corresponds to a single participant.
A very weak, non-significant (p = 0.69, n = 12) negative
correlation is observed between offline reconstruction accuracy
(i.e., multivariate R2) and average real-time error (i.e., MAE).
Based on this observation, we conclude that it is not possible
to predict the performance of real-time finger position control
solely based on offline accuracy scores.

DISCUSSION

The goal of this study was to investigate the effect of user practice
on performance during intuitive, individual finger prosthesis
control. A large body of previous work has shown that controlling
a prosthesis using a non-intuitive interface, such as two-site EMG
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FIGURE 6 | Dimensionality reduction analysis. (A,B) Average cosine similarities between (A) first (B) and second PCs in each block with the respective PCs

computed in block 1. (C,D) Percentage of explained variance in each block by the (C) first and (D) first two PCs computed in block 1. (E,F) Percentage of explained

variance in each block by (E) first and (F) first two PCs computed in the same block. PC, principal component. Data for able-bodied participants are presented as

means with confidence intervals. Amputee data are shown separately for each of the two individuals.

mode switching, requires motor skills that can be developed
via frequent interaction with the device (Bouwsema et al., 2010;
Clingman and Pidcoe, 2014). With regard to proportional, that
is, continuous myoelectric control, there has been evidence that
experience can lead to formation of novel, task-specific muscle
synergies when the association between muscle co-activations
and the DOFs of the output device is non-intuitive from a
physiological perspective (Radhakrishnan et al., 2008; Nazarpour
et al., 2012; Pistohl et al., 2013; Ison and Artemiadis, 2015).
Therefore, non-intuitive paradigmsmay require training before a
user is able to control a prosthesis at its full capacity. On the other

hand, the use of more intuitive interfaces, such as those based
on multi-site EMG signal classification, can alleviate some of this
burden due to relying on a natural association between muscle
contractions and prosthesis activations. Previous work has shown
that even in the case of intuitive interfaces, user practice results in
substantial control performance improvement (Bunderson and
Kuiken, 2012; Powell et al., 2014; He et al., 2015; Hargrove et al.,
2017). However, these studies were concerned with classification-
based control, which still lacks complete intuitiveness due to the
discrete and sequential nature of the hand actuation mechanism.
Here, we investigated the effect of user adaptation on myoelectric
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FIGURE 7 | Effect of user practice on muscle force and output variability. (A) Average raw EMG power of used and non-used electrodes for real-time decoding in

early vs. late blocks. (B) One-to-one comparison of raw EMG power between early and late blocks. (C) Average finger position variability during the evaluation phase

of the real-time posture matching task in early vs. late blocks for EMG and glove control. (D) One-to-one comparison of finger position variability between early and

late blocks. SD, standard deviation.

control when using a decoder mapping EMG features onto
prosthetic digit positions.

We found evidence that the performance of intuitive,
independent prosthesis finger control can benefit from user
experience gathered during real-time, closed-loop interaction
with the control interface. In our experiment, two types of
feedback were provided, namely, visual, since the prosthetic hand
was within the visual field of the participant and responded
to their control input, and a performance score, which was
presented to the participants at the end of each trial. We
hypothesized that despite the intuitiveness of the controller,
experience should allow users to improve their performance.
Indeed, we observed a significant decrease in target posture
mismatch within ∼20 min of interaction with the prosthesis
(Figure 5).

Of particular interest is the question of whether the
observed improvement in performance can be retained
during long-term use. Previous work has demonstrated an
increase in classification-based myoelectric performance
after a 6–8 weeks home trial (Hargrove et al., 2017).
Whether a similar pattern can be observed with individual
finger control remains to be investigated. Furthermore,

it shall be compelling to investigate whether long-term
performance improvement is accompanied by permanent
changes in forward neuromotor control (i.e., motor
learning). Our study has demonstrated that users can
adapt rather quickly to improve performance on a specific
task based on feedback. However, to assess long-term
adaptation, a more extended study spanning across multiple
sessions and testing generalization on novel tasks might be
needed (Kantak and Winstein, 2012).

The dimensionality reduction analysis (Figures 6A,B)
revealed that over the course of our experiments, substantial
changes occurred in the covariance structure of the recorded
EMG signal envelopes, and therefore the direction and variance
explained by the first two PCs (Figures 6C,D). Although such
temporal changes in muscle co-activation patterns might in part
reflect the non-stationary nature of surface EMG recordings,
when combined with the observed increase in task performance,
these changes may be primarily mediated by user adaptation in
muscle recruitment. It is worth mentioning that although the
extracted PCs reflect muscle co-activation patterns, they do not
directly correspond to muscle synergies, as we did not target
specificmuscles during electrode positioning. However, by taking
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FIGURE 8 | Relationship between offline reconstruction accuracy (multivariate

R2) and real-time performance (MAE). Circles/squares, individual observations

(i.e., one for each participant); line, linear regression fit; translucent band, 95%

confidence intervals estimated via bootstrapping (1,000 iterations); r,

correlation coefficient; p, significance value.

into consideration that the EMG electrodes record in this setting
a superposition of the activity of different muscles, and also given
that PCA produces a linear transformation of the input space,
it is reasonable to expect that similar results would have been
obtained had we targeted specific muscles. It is also worth noting
that the dimensionality reduction analysis was performed on the
EMG envelopes, that is, the mean absolute value of the recorded
signals, whereas various non-linear feature transformations were
used for decoding finger positions from EMG signals. Therefore,
there is no direct correspondence between the estimated PCs
and the principal directions of the regression problem (Krasoulis
et al., 2015a), which has a substantially higher dimensionality. It
can be observed in Figures 6C,D that the first two PCs explained
a higher percentage of the overall variance in the two amputee
than in the able-bodied participants. We attribute this to the
smaller number of electrodes used in the former case (i.e., 12
and 13 electrodes for amputees as opposed to 16 electrodes for
able-bodied participants). The percentage of explained variance
in each block by the PCs computed in the same block remained
constant during the experiment (Figures 6E,F). This observation
rules out the possibility that the decrease in explained variance
by the PCs extracted in the first block (Figures 6C,D) is due
to exogenous parameters, hence further suggesting that this
reduction is caused by changes in muscle co-activation patterns
emerging from short-term user adaptation.

Force field adaptation studies have previously shown that
humans learn to optimize limb impedance tominimizemetabolic
costs and movement error simultaneously (Burdet et al., 2001).
In addition to a decrease in movement error, we also observed a
small, however non-significant, reduction in overall EMG power
exerted by the participants’ muscles and a significant decrease
in the variability of the controllable DOAs (Figure 7). Both

of these observations are compatible with the notion of limb
impedance optimization. Notably, we did not observe a decrease
in finger position variability with glove control, hence implying
that the respective reduction with EMG control should be indeed
attributed to changes in the recorded muscle signals. A key
difference between our study and previous work (Burdet et al.,
2001) is that the user and the device were not mechanically
linked, but in both cases the effector was unstable and with
practice subjects learned to enhance its stability. The decrease
in median EMG power was non-significant (p = 0.10) and
therefore no definitive conclusions can be drawn regarding
whether and how user training can lead to a reduction in muscle
metabolic cost during myoelectric control. Future experiments
with amputee participants wearing a prosthetic hand can reveal
the extent to which energy-efficient control can be achieved. It is
unlikely that the observed trend is due tomuscle fatigue, since it is
known that the latter is associated with an increase in EMGpower
with a simultaneous reduction of median frequency of the EMG
spectrum (Luttmann et al., 2000; Bartuzi and Roman-Liu, 2014).

A previous study that made use of a performance score that
was similar to the one presented to the participants at the end
of the trials reported an increase from 0 to 40% after ∼200
trials (Pistohl et al., 2013). In the current study, the average
performance with EMG control increased from 33.48 to 36.50%
corresponding to a decrease in average MAE from 0.28 to
0.26 (Figure 5A) after 108 trials. Although this improvement is
smaller than the one reported previously, this finding should not
be surprising; the previous study used a pre-determined, fixed,
and non-intuitive mapping from muscle activity to the DOAs
of the prosthetic hand, and thus, participants had to learn the
underlying control principle, that is, an inverse model of the
interface (Dyson et al., 2018) from scratch. Conversely, in our
study, the mappings were based on regression models trained
with user-specific data; hence, the mappings were intuitive for
all participants and the baseline performance at the start of the
experiment was well above zero.

Our results agree with previous work suggesting that
experience can help humans improve their performance at
myoelectric control tasks, even in the case of intuitive interfaces
(Radhakrishnan et al., 2008). A question that may naturally
arise is why one should expect such improvement when using
biomimetic, intuitive myoelectric decoders. Before addressing
this sensible question, one should first note that in our
experiments an increase in performance was also observed in
the case of robotic hand teleoperation using the data glove,
despite the very high level of intuitiveness of this particular
task. With this important information in mind, we seek to
provide the following justification: despite being intuitive from
a physiological perspective, the myoelectric controller is still
far from natural; this is due to many differences between the
human and robotic hands, including, but not limited to, the
number of DOFs, the finger anatomical structure, and the range
of fingermovement. Furthermore, our control algorithmmapped
recorded muscle activity onto finger joint positions without
taking into account joint velocities or digit forces which, in the
human body, are also controlled by muscle contractions. In the
case of EMG control, although decoding accuracy was relatively
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high, it was still far from perfect (Figure 3). Therefore, it is
likely that participants performed compensatory contractions to
correct for prediction errors (Jiang et al., 2014; Hahne et al.,
2017). Finally, it is worth noting that the lack of proprioception
in amputees can only exacerbate the challenges outlined above.
Taking everything into consideration, it is clear that despite
our best efforts, it is still impossible to develop biomimetic
myoelectric control schemes that feel entirely natural to the
user, unless all the following conditions are simultaneously met:
the end device is a perfect replication of the human hand,
sensing technologies and decoding algorithms allow for near-
perfect reconstruction of movement intent and, finally, artificial
proprioceptive information is fed back to the user. In any other
case, a certain amount of adaptation is still very likely to take
place during interaction with the device, which has the potential
to substantially improve control performance.

In addition to an increase in control accuracy, user training
may have additionally resulted in a reduction in reaction time.
However, given the long preparation window, in combination
with the fact that performance was only assessed with respect
to the final posture and not the followed trajectories, it seems
unlikely that this factor could explain the observed increase in
control performance. One such example is given in Figure S5,
where two trials are compared for the same participant and
posture, one at the start and one at the end of the experimental
session. For the shown example, after training, the participant
was able to reach the desired posture in less time and with better
accuracy. However, in both cases, the final posture was achieved
before the start of the evaluation phase. Hence, the difference
in performance scores is only due to the higher accuracy of
the end posture in the late trial. The length of the preparation
window was set during pilot trials to the chosen value (i.e.,
3.5 s), as this was found to offer a good compromise between
the desired task difficulty and the ability to assess performance
without being influenced by a potential decrease in user
reaction time.

In the context of myoelectric classification, it has been
previously shown that a discrepancy exists between offline
accuracy and real-time control performance (Ortiz-Catalan et al.,
2015). With regard to continuous wrist control, it has been
shown that only a weak correlation exists between offline R2

and metrics characterizing real-time performance during a target
achievement control test, such as completion rate, completion
time, overshoots, throughput, speed, and efficiency coefficient
(Jiang et al., 2014). To assess whether a similar statement
could be made about continuous finger position control, we
compared offline reconstruction accuracy to performance scores
during the real-time posture matching task. In agreement with
previous work (Jiang et al., 2014; Ortiz-Catalan et al., 2015),
a very weak, non-significant correlation was found between
offline accuracy and real-time performance. Such differences
between offline decoding and real-time control, which may
be primarily attributed to user adaptation taking place during
closed-loop interaction, further reiterate the need for testing
prosthetic control methodologies with real-time experiments
(Jiang et al., 2012, 2014; Ortiz-Catalan et al., 2015; Vujaklija et al.,
2017).

In this study, we focused on non-invasive, continuous position
control of individual digits. In line with previous work (Cipriani
et al., 2011), we have shown that it is feasible, in principle, to
use surface EMGmeasurements from the forearm of able-bodied
and transradial amputee subjects to decode finger positions
and subsequently use these estimates to control the individual
digits of a prosthesis in real-time. The set of controllable
DOAs included flexion of all fingers and thumb opposition.
The ring and little fingers were controlled together because
of mechanical coupling in the robotic device used in our
experiments. Offline analysis revealed that thumb movement
(flexion and rotation) was the most challenging to decode
(Figure 3). This is not surprising, given that thumb muscles are
either intrinsic or located in the distal part of the forearm. In
this work, however, we focused on transradial amputation and,
therefore, recorded EMG activity from the proximal part of the
forearm only.

The continuous finger position controller has two main
advantages: intuitiveness and dexterity. As has already been
pointed out, training regression models using muscle signals
and glove data recorded from the end-user creates an intuitive
association between muscle activity and finger movement and,
thus, the user does not need to learn a new mapping from
scratch. Dexterity naturally arises from the fact that the user can
control individual digits in a continuous space. One particular
advantage of this scheme over discrete control schemes, for
example, classification-based grip selection, is the ability to
move from one type of grip to another without the need for
executing an intermediate hand opening action. The high level
of dexterity, however, comes at a price; decoding independent
fingermovement is amuchmore challenging task than classifying
EMG activity into hand postures. In its current form, the
proposed scheme is unlikely to be suitable for clinical adoption by
amputees, as significant improvements are required to ensure its
long-term viability. For example, one simplification made in this
study was that the posture of the participants’ forearm was kept
fixed throughout the experimental sessions. This simplification
would not occur in a realistic scenario and, thus, it is expected
that performance would deteriorate due to the limb position
effect (Fougner et al., 2011). Nevertheless, given the potential of
this method to achieve intuitive and truly dexterous prosthetic
control, we consider it is worthwhile pursuing further research in
this direction.

It is worth mentioning that an invasive approach might
indeed be required to achieve robust finger position control.
Intramuscular EMG recordings have been previously used for
continuous finger control of both virtual (Birdwell et al., 2015)
and robotic (Cipriani et al., 2014) hands. Both of these studies,
however, had the following two limitations: firstly, they used
a one-to-one mapping from individual pairs of muscles to
DOAs of the hand; secondly, they were limited to able-bodied
participants. An alternative avenue would be to investigate the
use of multivariate regression models in mapping the activity
of multiple muscles onto prosthesis DOAs, as opposed to
the previously used one-to-one mapping schemes. Another
compelling possibility would be to test the performance of
continuous finger control in patients having undergone targeted
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muscle reinnervation. It has been previously demonstrated that
hand/wrist movements can be classified with high accuracy in
targeted muscle reinnervation patients (Kuiken et al., 2009).
Whether robust individual finger control can be achieved using
a similar invasive approach remains to be investigated.

As a final note, we seek to re-emphasize the important role that
user adaptation could play in myoelectric control of prosthetic
fingers, regardless of the origin of control signals. We have shown
here that even with an intuitive decoder, humans can improve
their performance in a biofeedback myoelectric task within a
short period of time. In line with previous reports from the
myoelectric classification and wrist control literature (Jiang et al.,
2014; Ortiz-Catalan et al., 2015), we conclude that future efforts
should focus on putting the human in the loop and evaluating
control methodologies with real-time, closed-loop experiments.
We firmly believe that further advancements can be achieved
by explicitly taking into account the remarkable plasticity of the
human brain when designing myoelectric control interfaces.
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