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We would like to thank all commentators for their insightful commentaries. Thanks to their diverse and comple-
mentary expertise in neuroscience and robotics, the commentators have provided us with the opportunity to further 
discuss state-of-the-art and gaps in the integration of neuroscience and robotics reviewed in our article. We organized 
our reply in two sections that capture the main points of all commentaries [1–9]: (1) Advantages and limitations of 
the synergy approach in neuroscience and robotics, and (2) Learning and role of sensory feedback in biological and 
robotics synergies.

1. Advantages and limitations of the synergy approach in neuroscience and robotics

As described by all commentators, the theoretical framework of synergies has inspired research on the nervous 
system’s ability to control multiple degrees of freedom across a variety of contexts and experimental models. In the 
context of bio-inspired design of neuroprosthetic devices, Alessandro et al. [1], D’Avella [3], Lacquaniti et al. [5], 
Latash [6], Schieber [8], and Schwartz [9] point out that synergies have been a useful approach to study a wide 
range of motor behaviors besides hand control, including upper limb movements and locomotion, and describe some 
of the major findings of this research. Further, Schwartz [9] provided an insightful overview of the evolution of 
the concept of synergies, starting from pioneering work of Bernstein and Sherrington. All commentators concurred 
about the tremendous potential offered by leveraging the concept of synergy in robotics design for understanding 
neural control of movement. At the same time, they also raised important questions about how to best address such 
integration. Brock and Valero-Cuevas [2] make a point by noting that redundancy of degrees of freedom is counter 
to what one would expect to result from evolutionary process. According to the commentary by Lacquaniti and 
colleagues [5] (and as further reviewed in [10]), the acquisition of complex motor behavior in locomotion might 
rely on the sensorimotor system’s ability to combine and acquire low-dimensional modular representations of motor 
commands, akin to motor synergies. Latash [6], who has performed extensive investigations on synergies, offers 
a thought-provoking alternative view of synergies as mechanisms whose functional role is leveraging, rather than 
reducing, the large number of dimensions of the sensorimotor system – which he defines as being abundant, rather than 
redundant. Latash [6] also commented that the central nervous system may specify spatial reference configurations 
for salient variables, which can be defined according to a hierarchical and hence synergistic organization. At the 
same time, performance variables (e.g. forces, displacements, and muscle activations) emerge with respect to external 
conditions. These Reference Configurations (RC) can be therefore mapped on a set of control variables through 
redundant, or abundant, transformations. For this reason, we agree with Latash [6] that to correctly define synergies 
from a biological perspective requires studying control variables involved in these transformations, which remains a 
challenging task.

However, from an engineering point of view, even a less far-reaching version of the RC concept in terms of spatial 
reference provides a very useful conceptual framework. We refer to this framework as “soft synergy” model, which 
can be profitably employed to drive the design of simple, but effective robotic hands. At the same time, it offers a 
valuable tool for robotic modeling, e.g., to explain the generation of performance variables (e.g. force distribution), 
which are related to external conditions and salient variable configurations (e.g. geometrical description of postural 
synergies). The Pisa/IIT SoftHand, whose design is inspired by such a soft synergy idea, represents a good example of 
the mutual inspiration between neuroscientific studies and robotics, and a first attempt to translate the neuroscientific 
considerations reported by the authors in technological applications.

Brock and Valero-Cuevas [2] made a distinction between prescriptive and descriptive synergies. Prescriptive syn-
ergies, and associated dimensionality reduction, are grounded in the biological system’s neural and biomechanical 
architecture. In contrast, descriptive synergies are the measurable net outcome of the interaction between the opera-
tion of prescriptive synergies and the environment. These concepts appear not to be irreducibly different from the ideas 
postulated in the soft synergy model of a spatial RC living in the postural synergy manifold, and the actual configura-
tions that the hand reaches at equilibrium under the attraction of the RC and the interaction with the environment. The 
main apparent difference is that the soft synergy model does not need a hierarchical description of the equilibrium 
manifold in terms of principal components or synergies. Although similarities and differences between these two sets 
of concepts certainly warrant further discussion and investigation, we will elaborate here on the hypothesis that a 
convergence is possible.

The need for separating the description of the RC/prescriptive synergy manifold and the equilibrium/descriptive 
manifold, which was brought up also in the commentaries by Alessandro et al. [1] and d’Avella [3], was indeed at the 
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origin of the experimental design originally used by Santello and colleagues [11], who extracted RC/prescriptive hand 
postural synergies by asking subjects to grasp imagined, rather than real, objects. Interestingly, our recent study based 
on kinematic synergies revealed that a synergy-based model could encode grasping virtual objects in human motor 
cortical areas significantly better than somatotopic or muscle-based models [12]. The demonstration that synergies 
are both topographically arranged in human motor areas across individuals, and correspond to meaningful motor 
primitives that group together multiple joints, support the idea that the nervous system specifically exploits synergies 
“as a control mechanism” [3,9]. In particular, these observations revealed that human motor cortical areas represent 
hand postures by combining few elementary synergy-based module, thus indicating how descriptive synergies – at 
least in part – overlaps with prescriptive synergies. Indeed, kinematic synergies account only for a portion of the 
brain activity, thus implying that other performance variables, which are required to grasp or to manipulate an object 
and have to be continuously monitored to allow for online corrections (e.g. contact forces, muscle activity, temporal 
patterns of movements, action goals, etc.) [6] might also be encoded in primary motor cortex (e.g., [13]). However, 
despite recent findings reported in [12], the role of cortical motor areas – i.e., whether they actually contain information 
on synergy modules or simply act as a mere selector of motor primitives that are encoded at different levels – still 
remains open.

Robotics researchers have leveraged RC/prescriptive synergies observed in humans to simplify control [14] and 
design [15] of artificial hands, but work in “The Hand Embodied” went a step further by combining these concepts 
with a soft robotic implementation, thus instantiating the soft synergy paradigm by conferring the compliance needed 
to adapt to the environment [16]. This approach significantly increases the versatility of the hand: as the artificial hand 
can attain configurations outside the simplified RC synergy manifold, the user can exploit environmental constraints 
to shape the hand across a much richer variety of postures [17,18]. By doing so, softness effectively acts as a multiplier 
of prescriptive synergies onto a higher dimensional equilibrium manifold, where a wider repertoire of behaviors can 
be achieved.

Laumond [7] pointed out limitations of applications of the concept of synergies to robotics [7], and in particular 
the issue of limiting the range of dexterous behaviors when taking inspiration from biological synergies to design 
robotic hands. Similarly, Schieber [8] commented that synergies have limitations in biological artificial systems: the 
reproduction of biological motor behaviors by robots would require a very large number of synergies. As [7] and [8]
also pointed out, there are limitations due to the fact that synergies are intrinsically task dependent [19]. For example, 
playing piano requires different and more complex action-driven movements. However, there is evidence suggesting 
that complex actions, such as haptic exploration, can be described through synergies, which can be used to reconstruct 
“simpler” postures (e.g. grasps). This points to the existence of commonalities of digit movement coordination patterns 
across these tasks [20]. All of these comments on functional limitations of synergies are perfectly justified for the 
case where reference synergies are used prescriptively, i.e. rigidly. However, these limitations can be mitigated by 
experimental evidence showing that humans can use a hand designed with a single reference synergy to perform 
complex tasks (see e.g., [21]), by exploiting the interaction of the environment constraints and the hand softness. In 
general, however, it is clear that to achieve better dexterity, e.g. for doing in-hand manipulation tasks, the number of 
independently controllable reference synergies has to be increased.

These considerations also offer significant insights on the mechanisms underlying learning of novel synergies, and 
how task requirements may shape them. Specifically, and as pointed out by Ficuciello and Siciliano [4], the intrinsic 
limitation in the range of tasks that robotic synergies can perform could be addressed by leveraging upon machine 
learning techniques for posture generalization [22,23]. A non-mutually exclusive approach is to increase the functional 
capabilities of artificial hands by leveraging additional degrees of actuation, or to implement hands based on different 
RC synergy sets for different sets of tasks. A robotic hand implementing two independent soft synergies has been 
recently demonstrated [24]. This hand can rotate grasped objects even without recurring to help from environmental 
constraints. There is an obvious trade-off between having a more dexterous robot hand and the corresponding increase 
in cost, fragility, and complexity of control. It should be pointed out that building a complex hand (for example, with 
all joints independently controlled) may be much easier, from a research perspective, than conceiving one where the 
same degrees of freedom are organized according to a principled simplification scheme. The real research challenge 
could thus be posed as to design the simplest hand that can perform a given task or set of tasks, and to investigate the 
conjecture that the “minimalistic” hand that can perform all tasks humans can perform is the human hand itself.

Schieber [8] also discusses the impact of the interplay between neuroscience and robotics on the development of 
neuroprostheses, as well as on advancing our understanding of brain function. As an example of a relevant application, 
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we mention here the prosthetic version of the Pisa/IIT SoftHand, which has been preliminarily tested on individuals 
with upper limb loss and successfully used to perform activities of daily living, e.g., playing cards and picking up a 
coin from a table surface [25]. The commentaries of Laumond [7] and Schieber [8] share the underlying notion that 
caution should be observed when applying biological principles to robotics, and biological synergies are no exception. 
We agree with this point. Robotics has often taken inspiration from evolution, and awareness of how biological systems 
work is a powerful tool for researchers. However, bio-aware robotics should not be reduced to merely trying to imitate 
Nature. This is not really an option, given that the physics of materials available to engineers is totally different 
from biological materials, which also implies differences in the type of intelligence that is embodied in biological 
structures. Rather, what bio-aware robotics tries to do is to describe neuroscientific observations and understanding 
into a language that can be translated into artificial systems to inform a more effective design. This language is by 
necessity mathematical, and geometry appears to be the most effective abstraction to describe actions and interaction 
of natural and artificial systems.

2. Learning and role of sensory feedback in biological and robotics synergies

One of the major questions regarding synergies is the extent to which their organization may be fixed or flexible 
with regard to their ability to adapt to different task conditions, and be reconfigured as a function of learning processes. 
Understanding these fundamental phenomena could lead to insight into the design of more versatile robotic devices. 
This was pointed out by Ficuciello and Siciliano [4], who also suggested the potential benefits of investigating learning 
algorithms in conjunction with synergies. These investigations would aim at combining a low-dimensional control 
space with the system’s ability to adapt to a wide variety of task condition. We welcome this suggestion and agree 
that it would be particularly useful for robotic designs that combine synergy-based dimensionality reduction with soft 
robotics [16–18]. This would enable to naturally multiply the degrees of freedom of these systems, which can deform 
and adapt to the external environment, and thus be capable to perform a wide range of actions. At the same time, 
such an ability could be profitably employed to reproduce tasks with dynamically changing constraints, leveraging 
upon environment exploration, e.g. within the general framework of Reinforcement Learning or Iterative Learning 
Control [22,26]. If such an integration of learning algorithms and synergies could be optimized, performance of 
heavily under-actuated devices should significantly improve without having to compromise the complexity of their 
mechanical design. Related to generalization and learning of synergies in humans, two important points are brought 
up by Lacquaniti et al. [5]: the limited extent to which synergies can generalize to task performed under different 
conditions, and the role of modular synergies as ‘building blocks’ whose integration allows for the acquisition of 
more complex motor behaviors. Within this framework, different synergies might therefore result from combining 
existing ones as required by the task. Examples of implementation of this concept to robotics in the form of dynamic 
motion primitives are described by d’Avella [3], who also suggests that a better understanding of the role of synergies 
in biological sensorimotor learning could have a significant impact on robotics.

The above considerations bring up a complementary dimension to motor execution through synergies, i.e. sensory 
feedback and how this may play a role in assembling new synergies or drive new combinations of pre-existing syn-
ergies to create new ones [27]. Alessandro et al. [1] commented on the concept of sensory synergies proposed in our 
article, how these may differ from motor synergies, and elaborated on open questions in the synergy literature. Both 
definitions of motor and sensory synergies rely on the concept of dimensionality reduction. Specifically, while in the 
motor domain the human brain needs to face the problem of coordinating many degrees of freedom, in the sensory 
domain the objective is to generate meaningful perceptual representations from the high dimensional space of sensory 
inputs. Thus, motor and sensory synergies can be considered as two mirror processes within the same sensorimotor 
loop: An analytic process from an intended action to multiple muscle activation and a synthetic process from multiple 
sensory inputs towards a unique, meaningful percept.

However, the concept of sensory synergies implies that central nervous system preferentially encodes some aspects 
of the environment that are important for task accomplishment, and that such aspects can be characterized in terms 
of high-level features. In [28,29] was hypothesized the existence of a synergistic organization of the somatosensory 
system, where the higher order variables that have to be stabilized are percepts, whereas the lower-level degrees of 
freedom are provided by the huge amount of sensory inputs from different body locations. Configurations of the 
afferent signals that are consistent with synergies would occur more likely than those associated with afferent signals 
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that are not consistent with synergies. This would act to stabilize the perceptual systems towards specific synergistic 
postures. Sensory synergies would thus represent attractors towards natural hand postures.

Alessandro et al. [1] also pointed out that, besides the above general definition of synergies, motor synergies offer a 
model on how such a reduction could be obtained, whereas such a model is more difficult to conceptualize in the sen-
sory domain. In the motor domain, two different strategies could be involved in the synergy-based control of artificial 
and biological systems: (1) identification of the subspace of control commands necessary to achieve task goals, and 
then development of a basis set of synergies spanning the workspace; or (2) choice of a small set of synergies and their 
use for task accomplishment. When searching for similar strategies in the sensory domain, an example of how dimen-
sionality reduction could be attained is the sparse coding of tactile information in cuneate neurons, which seems to be 
apt at segregating haptic features [30]. Such segregation of tactile input features in the cuneate nuclei provides an ex-
ample of a synthetic (or synergistic) representation of the fundamental stimulus features in the somatosensory system. 
However, what is still unclear is how to generalize this concept and use it to explain the generation of complex percep-
tions. The concept of multi-sensory integration might answer this question [28]. Here we describe an example of how 
such integration might lead to discrimination of softness. When humans probe a given material for softness, this leads 
to force and displacement sensing, and also creates patterns of cutaneous strain-stress distributions. Although such 
kinesthetic and tactile stimulations lead to different sensory representations, both are important for softness discrimi-
nation during the interaction with compliant non-deformable objects [31]. Specifically, kinesthetic and cutaneous cues 
or, more specifically, the associated higher order variables based on varying contributions from lower-level sensors 
(e.g. mechanoreceptors, muscle spindles, etc.), are fused into a coherent perceptual representation. This can be de-
scribed as the combination of a large number of sensory synergies to generate reliable perception of physical stimuli. 
Additional psychophysical evidence supports the hypothesis that sensory and motor inputs can cooperate to provide 
a unique perceptual representation, as observed in [32] for the fusion of touch and proprioception in hand kinematics 
perception. Here, a mapping between the strain pattern on the skin and the coordinated motor activity can be observed, 
which is consistent with the definition of sensory-motor synergies [33]. Nevertheless, how the recruitment of sensory 
synergies operates and at what level of the sensory system it occurs remain open questions.

Schwartz [9] emphasizes that correlational structures identified at different levels of biological systems, ranging 
from groups of neurons to muscles or fingers, might represent one aspect of a more fundamental defining property 
of brain function. Here the challenge is again separating what Schwartz [9] calls the ‘neural drivers’ of identifiable 
correlations in motor output from correlations in behavioral variables arising from biomechanical constraints (non-
neural drivers), i.e., multi-joint tendons causing torques at multiple joints in response to the action of one muscle 
acting on its tendon. Schwartz [9] further proposes that the functional role of synergies at the highest hierarchical 
levels of the neural control system might be to reduce the information load by controlling groups of neurons, thereby 
significantly reducing the dimensionality of the control space. A critical point is that the correlational structure in the 
descending commands to muscles should be flexible in order to effectively fulfill the above-described functional role. 
It follows that correlational structures in the motor output should not be interpreted as the by-product of fixed modules 
in the nervous system. To this aim, even if it was shown that the functional neuroanatomy of kinematic synergies was 
embedded in motor cortical areas and that sensorimotor areas encode different combinations of synergies [12], other 
functions such as continuous monitoring for on-line adaptation and motor corrections are also likely encoded in the 
brain to integrate the flexibility and adaptability of modular control.

3. Summary

The review article and the commentaries highlight important advances in our understanding of biological synergies 
and how this has inspired novel approaches in robotics design. Although further work is needed to elucidate the 
interplay between correlational structures across different levels of biological systems, the integration of neuroscience 
and robotics has proven to be an effective way to generate novel insights, theories, and practical applications, and thus 
yields tremendous potential for advancing the mission of both fields.
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