1,947 research outputs found

    Building machines that adapt and compute like brains

    Get PDF
    Building machines that learn and think like humans is essential not only for cognitive science, but also for computational neuroscience, whose ultimate goal is to understand how cognition is implemented in biological brains. A new cognitive computational neuroscience should build cognitive-level and neural- level models, understand their relationships, and test both types of models with both brain and behavioral data.Comment: Commentary on: Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. (2017) Building machines that learn and think like people. Behavioral and Brain Sciences, 4

    Relating Population-Code Representations between Man, Monkey, and Computational Models

    Get PDF
    Perceptual and cognitive content is thought to be represented in the brain by patterns of activity across populations of neurons. In order to test whether a computational model can explain a given population code and whether corresponding codes in man and monkey convey the same information, we need to quantitatively relate population-code representations. Here I give a brief introduction to representational similarity analysis, a particular approach to this problem. A population code is characterized by a representational dissimilarity matrix (RDM), which contains a dissimilarity for each pair of activity patterns elicited by a given stimulus set. The RDM encapsulates which distinctions the representation emphasizes and which it deemphasizes. By analyzing correlations between RDMs we can test models and compare different species. Moreover, we can study how representations are transformed across stages of processing and how they relate to behavioral measures of object similarity. We use an example from object vision to illustrate the method's potential to bridge major divides that have hampered progress in systems neuroscience

    The Topology and Geometry of Neural Representations

    Full text link
    A central question for neuroscience is how to characterize brain representations of perceptual and cognitive content. An ideal characterization should distinguish different functional regions with robustness to noise and idiosyncrasies of individual brains that do not correspond to computational differences. Previous studies have characterized brain representations by their representational geometry, which is defined by the representational dissimilarity matrix (RDM), a summary statistic that abstracts from the roles of individual neurons (or responses channels) and characterizes the discriminability of stimuli. Here we explore a further step of abstraction: from the geometry to the topology of brain representations. We propose topological representational similarity analysis (tRSA), an extension of representational similarity analysis (RSA) that uses a family of geo-topological summary statistics that generalizes the RDM to characterize the topology while de-emphasizing the geometry. We evaluate this new family of statistics in terms of the sensitivity and specificity for model selection using both simulations and functional MRI (fMRI) data. In the simulations, the ground truth is a data-generating layer representation in a neural network model and the models are the same and other layers in different model instances (trained from different random seeds). In fMRI, the ground truth is a visual area and the models are the same and other areas measured in different subjects. Results show that topology-sensitive characterizations of population codes are robust to noise and interindividual variability and maintain excellent sensitivity to the unique representational signatures of different neural network layers and brain regions.Comment: codes: https://github.com/doerlbh/TopologicalRS

    Representational geometry: integrating cognition, computation, and the brain

    Get PDF
    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure

    Adjudicating between face-coding models with individual-face fMRI responses.

    Get PDF
    The perceptual representation of individual faces is often explained with reference to a norm-based face space. In such spaces, individuals are encoded as vectors where identity is primarily conveyed by direction and distinctiveness by eccentricity. Here we measured human fMRI responses and psychophysical similarity judgments of individual face exemplars, which were generated as realistic 3D animations using a computer-graphics model. We developed and evaluated multiple neurobiologically plausible computational models, each of which predicts a representational distance matrix and a regional-mean activation profile for 24 face stimuli. In the fusiform face area, a face-space coding model with sigmoidal ramp tuning provided a better account of the data than one based on exemplar tuning. However, an image-processing model with weighted banks of Gabor filters performed similarly. Accounting for the data required the inclusion of a measurement-level population averaging mechanism that approximates how fMRI voxels locally average distinct neuronal tunings. Our study demonstrates the importance of comparing multiple models and of modeling the measurement process in computational neuroimaging.This work was supported by the European Research Council (261352 awarded to NK), the UK Medical Research Council (MC_A060_5PR2 awarded to NK), and a British Academy Postdoctoral Fellowship (JDC)
    corecore