140 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Effect of supports on HDS activity of Au-Pd catalysts

    No full text
    742-747The Au-Pd catalysts have been used successfully for thiophene hydrodesulfurization (HDS). The effects of Al₂O₃, TiO₂-Al₂O₃, ZrO₂-Al₂O₃ and CeO2-Al₂O₃ supports on HDS activities of Au-Pd catalysts have been investigated. The results show that Au-Pd catalysts supported on mixed oxide exhibit much higher HDS activity and stability than that of the Au-Pd/Al₂O₃ catalyst. TiO2-Al₂O₃ is the best support among these mixed oxides. As compared with Au-Pd/Al₂O₃ catalyst, Au-Pd/TiO₂-Al₂O₃ catalyst has higher acid density and acid strength, and active surface area to absorb higher amounts of H₂ and CO

    Enhancing oxygen permeation via the incorporation of silver inside perovskite oxide membranes

    No full text
    As a possible novel cost-effective method for oxygen production from air separation, ion-conducting ceramic membranes are becoming a hot research topic due to their potentials in clean energy and environmental processes. Oxygen separation via these ion-conducting membranes is completed via the bulk diffusion and surface reactions with a typical example of perovskite oxide membranes. To improve the membrane performance, silver (Ag) deposition on the membrane surface as the catalyst is a good strategy. However, the conventional silver coating method has the problem of particle aggregation, which severely lowers the catalytic efficiency. In this work, the perovskite oxide La0.8Ca0.2Fe0.94O3-a (LCF) and silver (5% by mole) composite (LCFA) as the membrane starting material was synthesized using one-pot method via the wet complexation where the metal and silver elements were sourced from their respective nitrate salts. LCFA hollow fiber membrane was prepared and comparatively investigated for air separation together with pure LCF hollow fiber membrane. Operated from 800 to 950 degrees C under sweep gas mode, the pure LCF membrane displayed the fluxes from 0.04 to 0.54 mL min(-1) cm(-2). Compared to pure LCF, under similar operating conditions, the flux of LCFA membrane was improved by 160%

    Production of β-Cyclocitral and Its Precursor β-Carotene in Microcystis aeruginosa: Variation at Population and Single-Cell Levels

    No full text
    Bloom-forming cyanobacteria produce and release odorous compounds and pose threats to the biodiversity of aquatic ecosystem and to the drinking water supply. In this study, the concentrations of β-cyclocitral in different bacterial growth phases were investigated using GC–MS to determine the growth stage of Microcystis aeruginosa at high risk for β-cyclocitral production. Moreover, the synchronicity of the production of β-cyclocitral and its precursor β-carotene at both population and single-cell levels was assessed. The results indicated that β-cyclocitral was the main odorous compound produced by M. aeruginosa cells. The intracellular concentration of β-cyclocitral (Cβ-cc) as well as its cellular quota (Qβ-cc) increased synchronously in the log phase, along with the increase of cell density. However, they reached the maximum values of 415 μg/L and 10.7 fg/cell in the late stationary phase and early stationary phase, respectively. The early stage of the stationary phase is more important for β-cyclocitral monitoring, and the sharp increase in Qβ-cc is valuable for anticipating the subsequent increase in Cβ-cc. The molar concentrations of β-cyclocitral and β-carotene showed a linear relationship, with an R2 value of 0.92, suggesting that the production of β-cyclocitral was linearly dependent on that of β-carotene, especially during the log phase. However, the increase in Qβ-cc was slower than that in β-carotene during the stationary phase, suggesting that β-cyclocitral production turned to be carotene oxygenase-limited when the growth rate decreased. These results demonstrate that variations of β-cyclocitral production on a single-cell level during different bacterial growth phases should be given serious consideration when monitoring and controlling the production of odorous compounds by M. aeruginosa blooms

    Effects of beta-blockers on heart failure with preserved ejection fraction: a meta-analysis.

    No full text
    BackgroundEffects of beta-blockers on the prognosis of the heart failure patients with preserved ejection fraction (HFpEF) remain controversial. The aim of this meta-analysis was to determine the impact of beta-blockers on mortality and hospitalization in the patients with HFpEF.MethodsA search of MEDLINE, EMBASE, and the Cochrane Library databases from 2005 to June 2013 was conducted. Clinical studies reporting outcomes of mortality and/or hospitalization for patients with HFpEF (EF ≥ 40%), being assigned to beta-blockers treatment and non-beta-blockers control group were included.ResultsA total of 12 clinical studies (2 randomized controlled trials and 10 observational studies) involving 21,206 HFpEF patients were included for this meta-analysis. The pooled analysis demonstrated that beta-blocker exposure was associated with a 9% reduction in relative risk for all-cause mortality in patients with HFpEF (95% CI: 0.87 - 0.95; P ConclusionsThe beta-blockers treatment for the patients with HFpEF was associated with a lower risk of all-cause mortality, but not with a lower risk of hospitalization. These finding were mainly obtained from observational studies, and further investigations are needed to make an assertion

    Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF)

    No full text
    A series of carbonized PAF-1s were obtained with enhanced gas storage capacities and isosteric heats of adsorption (Qst for short). Especially, PAF-1-450 can adsorb 4.5 mmol g-1 CO2 at 273 K and 1 bar. Moreover, it also exhibits excellent selectivity over other gases. On the basis of single component isotherm data, the dual-site Langmuir-Freundlich adsorption model-based ideal adsorption solution theory (IAST) prediction indicates that the CO2/N2 adsorption selectivity is as high as 209 at a 15/85 CO2/N2 ratio. Also, the CO2/CH4 adsorption selectivity is in the range of 7.8-9.8 at a 15/85 CO2/CH4 ratio at 0 < p < 40 bar, which is highly desirable for landfill gas separation. The calculated CO2/H2 adsorption selectivity is about 392 at 273 K and 1 bar for 20/80 CO2/H2 mixture. Besides, these carbonized PAF-1s possess excellent physicochemical stability. Practical applications in capture of CO2 lie well within the realm of possibility
    corecore