50 research outputs found

    Concept for a Future Super Proton-Proton Collider

    Full text link
    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.Comment: 34 pages, 8 figures, 5 table

    GWAS for discovery and replication of genetic loci associated with sudden cardiac arrest in patients with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiologic evidence suggests a heritable component to risk for sudden cardiac arrest independent of risk for myocardial infarction. Recent candidate gene association studies for community sudden cardiac arrests have focused on a limited number of biological pathways and yielded conflicting results. We sought to identify novel gene associations for sudden cardiac arrest in patients with coronary artery disease by performing a genome-wide association study.</p> <p>Methods</p> <p>Tagging SNPs (n = 338,328) spanning the genome were typed in a case-control study comparing 89 patients with coronary artery disease and sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation to 520 healthy controls.</p> <p>Results</p> <p>Fourteen SNPs including 7 SNPs among 7 genes (ACYP2, AP1G2, ESR1, DGES2, GRIA1, KCTD1, ZNF385B) were associated with sudden cardiac arrest (all p < 1.30 × 10<sup>-7</sup>), following Bonferroni correction and adjustment for population substructure, age, and sex; genetic variation in ESR1 (p = 2.62 × 10<sup>-8</sup>; Odds Ratio [OR] = 1.43, 95% confidence interval [CI]:1.277, 1.596) has previously been established as a risk factor for cardiovascular disease. In tandem, the role of 9 genes for monogenic long QT syndrome (LQT1-9) was assessed, yielding evidence of association with CACNA1C (LQT8; p = 3.09 × 10<sup>-4</sup>; OR = 1.18, 95% CI:1.079, 1.290). We also assessed 4 recently published gene associations for sudden cardiac arrest, validating NOS1AP (p = 4.50 × 10<sup>-2</sup>, OR = 1.15, 95% CI:1.003, 1.326), CSMD2 (p = 6.6 × 10<sup>-3</sup>, OR = 2.27, 95% CI:1.681, 2.859), and AGTR1 (p = 3.00 × 10<sup>-3</sup>, OR = 1.13, 95% CI:1.042, 1.215).</p> <p>Conclusion</p> <p>We demonstrate 11 gene associations for sudden cardiac arrest due to ventricular tachycardia/ventricular fibrillation in patients with coronary artery disease. Validation studies in independent cohorts and functional studies are required to confirm these associations.</p

    Efficiency of Finding Muon Track Trigger Primitives in CMS Cathode Strip Chambers

    Get PDF
    In the CMS Experiment, muon detection in the forward direction is accomplished by cathode strip chambers~(CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using~36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge~(MTCC) exercise conducted by the~CMS experiment in~2006. In contrast to earlier studies that used muon beams to illuminate a very small chamber area (< ⁣0.01< \! 0.01~m2^2), results presented in this paper were obtained by many installed CSCs operating {\em in situ} over an area of  ⁣23\approx \! 23~m2^2 as a part of the~CMS experiment. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was found to be~99.93±0.03%99.93 \pm 0.03\%. These segments, found by the CSC electronics within 800800~ns after the passing of a muon through the chambers, are the input information for the Level-1 muon trigger and, also, are a necessary condition for chambers to be read out by the Data Acquisition System

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Design of Thrust Vectoring Vertical/Short Takeoff and Landing Aircraft Stability Augmentation Controller Based on L1 Adaptive Control Law

    No full text
    Aiming at the conversion process of thrust vectoring vertical/short takeoff and landing (V/STOL) aircraft with a symmetrical structure in the transition stage of takeoff and landing, there is a problem with the coupling and redundancy of the control quantities. To solve this problem, a corresponding inner loop stabilization controller and control distribution strategy are designed. In this paper, a dynamic system model and a dynamic model are established. Based on the outer loop adopting the conventional nonlinear dynamic inverse control, an L1 adaptive controller is designed based on the model as the inner loop stabilization control to compensate the mismatch and uncertainty in the system. The key feature of the L1 adaptive control architecture is ensuring robustness in the presence of fast adaptation, so as to achieve a unified performance boundary in transient and steady-state operations, thus eliminating the need for adaptive rate gain scheduling. The control performance and robustness of the controller are verified by inner loop simulation and the shooting Monte Carlo approach. The simulation results show that the controller can still track the reference input well and has good robustness when there is a large parameter perturbation

    Design of Thrust Vectoring Vertical/Short Takeoff and Landing Aircraft Stability Augmentation Controller Based on L1 Adaptive Control Law

    No full text
    Aiming at the conversion process of thrust vectoring vertical/short takeoff and landing (V/STOL) aircraft with a symmetrical structure in the transition stage of takeoff and landing, there is a problem with the coupling and redundancy of the control quantities. To solve this problem, a corresponding inner loop stabilization controller and control distribution strategy are designed. In this paper, a dynamic system model and a dynamic model are established. Based on the outer loop adopting the conventional nonlinear dynamic inverse control, an L1 adaptive controller is designed based on the model as the inner loop stabilization control to compensate the mismatch and uncertainty in the system. The key feature of the L1 adaptive control architecture is ensuring robustness in the presence of fast adaptation, so as to achieve a unified performance boundary in transient and steady-state operations, thus eliminating the need for adaptive rate gain scheduling. The control performance and robustness of the controller are verified by inner loop simulation and the shooting Monte Carlo approach. The simulation results show that the controller can still track the reference input well and has good robustness when there is a large parameter perturbation

    Prediction and Compensation Model of Longitudinal and Lateral Deck Motion for Automatic Landing Guidance System

    No full text
    This paper mainly studies the longitudinal and lateral deck motion compensation technology. In order to ensure the safe landing of the carrier-based aircrafts on the flight decks of carriers during the landing process, it is necessary to introduce deck motion information into the guidance law information of the automatic landing guidance system when the aircraft is about to land so that the aircraft can track the deck motion. To compensate the influence of the height change in the ideal landing point on the landing process, the compensation effects of the deck motion compensators with different design parameters are verified by simulation. For further phase-lead compensation for the longitudinal automatic landing guidance system, a deck motion predictor is designed based on the particle filter optimal prediction theory and the AR model time series analysis method. Because the influence of up and down motions on the vertical motion of the ideal landing point is the largest, the compensation effects of the designed predictor and compensator are simulated and verified based on the up and down motion of the power spectrum. For the compensation for the lateral motion, a tracking strategy of the horizontal measurement axis of the inertial stability coordinate system to the horizontal axis of the hull coordinate system (center line of the deck) is proposed. The tracking effects of the horizontal measurement axis of the designed integral and inertial tracking strategies are simulated and compared. Secondly, the lateral deck motion compensation commands are designed, and the compensation effects of different forms of compensation commands are verified by simulations. Finally, the compensation effects for the lateral deck motion under integral and inertial tracking strategies are simulated and analyzed
    corecore