104 research outputs found

    Trajectory-wise Iterative Reinforcement Learning Framework for Auto-bidding

    Full text link
    In online advertising, advertisers participate in ad auctions to acquire ad opportunities, often by utilizing auto-bidding tools provided by demand-side platforms (DSPs). The current auto-bidding algorithms typically employ reinforcement learning (RL). However, due to safety concerns, most RL-based auto-bidding policies are trained in simulation, leading to a performance degradation when deployed in online environments. To narrow this gap, we can deploy multiple auto-bidding agents in parallel to collect a large interaction dataset. Offline RL algorithms can then be utilized to train a new policy. The trained policy can subsequently be deployed for further data collection, resulting in an iterative training framework, which we refer to as iterative offline RL. In this work, we identify the performance bottleneck of this iterative offline RL framework, which originates from the ineffective exploration and exploitation caused by the inherent conservatism of offline RL algorithms. To overcome this bottleneck, we propose Trajectory-wise Exploration and Exploitation (TEE), which introduces a novel data collecting and data utilization method for iterative offline RL from a trajectory perspective. Furthermore, to ensure the safety of online exploration while preserving the dataset quality for TEE, we propose Safe Exploration by Adaptive Action Selection (SEAS). Both offline experiments and real-world experiments on Alibaba display advertising platform demonstrate the effectiveness of our proposed method.Comment: Accepted by The Web Conference 2024 (WWW'24) as an oral pape

    An H5N1 M2e-based multiple antigenic peptide vaccine confers heterosubtypic protection from lethal infection with pandemic 2009 H1N1 virus

    Get PDF
    Background. A 2009 global influenza pandemic caused by a novel swine-origin H1N1 influenza A virus has posted an increasing threat of a potential pandemic by the highly pathogenic avian influenza (HPAI) H5N1 virus, driving us to develop an influenza vaccine which confers cross-protection against both H5N1 and H1N1 viruses. Previously, we have shown that a tetra-branched multiple antigenic peptide (MAP) vaccine based on the extracellular domain of M2 protein (M2e) from H5N1 virus (H5N1-M2e-MAP) induced strong immune responses and cross-protection against different clades of HPAI H5N1 viruses. In this report, we investigated whether such M2e-MAP presenting the H5N1-M2e consensus sequence can afford heterosubtypic protection from lethal challenge with the pandemic 2009 H1N1 virus. Results. Our results demonstrated that H5N1-M2e-MAP plus Freund's or aluminum adjuvant induced strong cross-reactive IgG antibody responses against M2e of the pandemic H1N1 virus which contains one amino acid variation with M2e of H5N1 at position 13. These cross-reactive antibodies may maintain for 6 months and bounced back quickly to the previous high level after the 2nd boost administered 2 weeks before virus challenge. H5N1-M2e-MAP could afford heterosubtypic protection against lethal challenge with pandemic H1N1 virus, showing significant decrease of viral replications and obvious alleviation of histopathological damages in the challenged mouse lungs. 100% and 80% of the H5N1-M2e-MAP-vaccinated mice with Freund's and aluminum adjuvant, respectively, survived the lethal challenge with pandemic H1N1 virus. Conclusions. Our results suggest that H5N1-M2e-MAP has a great potential to prevent the threat from re-emergence of pandemic H1N1 influenza and possible novel influenza pandemic due to the reassortment of HPAI H5N1 virus with the 2009 swine-origin H1N1 influenza virus. © 2010 Zhao et al; licensee BioMed Central Ltd.published_or_final_versio

    An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI) H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP)-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e) of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses.</p> <p>Results</p> <p>Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum) adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses.</p> <p>Conclusions</p> <p>These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.</p

    Synthesis, photophysical properties and two-photon absorption study of tetraazachrysene-based N-heteroacenes

    Get PDF
    Three novel N‐heteroacene molecules (SDNU‐1, SDNU‐2 and SDNU‐3) based on tetraazachrysene units as cores have been designed, synthesized and fully characterized. Their photophysical, electrochemical and fluorescence properties were investigated, and they exhibited blue to green emission in the solid state. Interestingly, SDNU‐2 exhibited high solid photoluminescence quantum efficiencies (75.3 %), which is the highest value of N‐heteroacenes derivatives to date. Two‐photon absorption studies have been conducted by using the open and close aperture Z‐san technique. SDNU‐3 showed a significant enhancement in the two‐photon absorption cross‐section with magnitudes as high as about 700 GM (1 GM=1×10−50 cm4 s/photon) when excited with 800 nm light, which is the largest value based on a heteroacene system measured by using a Z‐scan experiment so far. We attribute the outcome to sufficient electronic coupling between the strong charge transfer of quadrupolar substituents and the tetraazachrysene core. Our result would provide a new guideline to design novel efficient two‐photon materials based on N‐heteroacene cores

    A Recombinant Vaccine of H5N1 HA1 Fused with Foldon and Human IgG Fc Induced Complete Cross-Clade Protection against Divergent H5N1 Viruses

    Get PDF
    Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc), and evaluated their immune responses and cross-protection against divergent strains of H5N1 virus. Results showed that these two recombinant vaccines induced strong immune responses in the vaccinated mice, which specifically reacted with HA1 proteins and an inactivated heterologous H5N1 virus. Both proteins were able to cross-neutralize infections by one homologous strain (clade 2.3) and four heterologous strains belonging to clades 0, 1, and 2.2 of H5N1 pseudoviruses as well as three heterologous strains (clades 0, 1, and 2.3.4) of H5N1 live virus. Importantly, immunization with these two vaccine candidates, especially HA1-Fdc, provided complete cross-clade protection against high-dose lethal challenge of different strains of H5N1 virus covering clade 0, 1, and 2.3.4 in the tested mouse model. This study suggests that the recombinant fusion proteins, particularly HA1-Fdc, could be developed into an efficacious universal H5N1 influenza vaccine, providing cross-protection against infections by divergent strains of highly pathogenic H5N1 virus

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Ce0.8Sm0.2O1.9 decorated with electron-blocking acceptor-doped BaCeO3 as electrolyte for low-temperature solid oxide fuel cells

    Get PDF
    A series of composites with nominal compositions of BaCe0.8Sm0.2O3-δ (BCS)-Ce0.8Sm0.2 O1.9 (SDC) (20:80, 35:65, 50:50, 65:35 wt.%) are synthesized by a modified citric acid-nitrate sol-gel combustion method and evaluated as the electrolytes for low-temperature solid oxide fuel cells (SOFCs). The TEM results show that doped BaCeO3 decorated SDC particles are formed after calcining at 1000 °C for 3 h. X-ray diffraction results reveal that the composites are only composed of BaCeO3-based and SDC phases without any other impurity phases. Besides, BaCeO3-based phase is uniformly distributed in the sintered electrolytes according to EDS element mapping. The open cell voltages (OCVs) of the single cells increase gradually with increasing the proportion of BaCeO3-based phase, and are higher than those for bare SDC-based cells. Besides, the power performances of the cells are superior to SDC-based cells when BaCeO3-based phase is lower than 35 wt.%. Electrochemical impedance spectroscopy analysis indicates that, in addition to blocking electronic current leakage, BaCeO3-based phase would induce higher ohmic and polarization resistance, which is detrimental to power performance. Further specific effort should be focused on synthesizing uniform SDC@BCS core-shell electrolyte powders and minimizing the proportion of BCS phase towards high-performance SOFCs with high OCVs

    Tuning the thickness of Ba-containing functional layer toward high-performance ceria-based solid oxide fuel cells

    No full text
    Developing highly efficient ceria-based solid oxide fuel cells with high power density is still a big concern for commercial applications. In this work, a novel structured Ce0.8Sm0.2O2-δ (SDC)-based fuel cell with a bilayered anode consisting of Ni-SDC and Ni-BaZr0.1Ce0.7Y0.2O3-δ (Ni-BZCY) was designed. In addition to the catalysis function, the Ni-BZCY anode functional layer also provides Ba source for generating an electron-blocking layer in situ at the anode/electrolyte interface during sintering. The Ni-BZCY thickness significantly influences the quality of the electron-blocking layer and electrochemical performances of the cell. The cell with a 50 μm thick Ni-BZCY layer exhibits the best performance in terms of open circuit voltage (OCV) and peak power density (1068 mW cm-2 at 650 °C). The results demonstrate that this cell with an optimal structure has a distinct advantage of delivering high power performance with a high efficiency at reduced temperatures
    corecore