104 research outputs found

    Effect of Adiabatic Phonons on Striped and Homogeneous Ground States

    Full text link
    The effects of adiabatic phonons on a spin-fermion model for high T_c cuprates are studied using numerical simulations. In the absence of electron-phonon interactions (EPI), stripes in the ground state are observed for certain dopings while homogeneous states are stabilized in other regions of parameter space. Different modes of adiabatic phonons are added to the Hamiltonian:breathing, shear and half-breathing modes. Diagonal and off-diagonal electron-phonon couplings are considered. It is observed that strong diagonal EPI generate stripes in previously homogeneous states, while in striped ground states an increase in the diagonal couplings tends to stabilize the stripes, inducing a gap in the density of states (DOS) and rendering the ground state insulating. The off-diagonal terms, on the other hand, destabilize the stripes creating inhomogeneous ground states with a pseudogap at the chemical potential in the DOS. The breathing mode stabilizes static diagonal stripes; while the half-breathing (shear) modes stabilize dynamical (localized) vertical and horizontal stripes. The EPI induces decoherence of the quasi-particle peaks in the spectral functions.Comment: latex, 9 pages,13 figure

    Weak phase stiffness and mass divergence of superfluid in underdoped cuprates

    Get PDF
    Despite more than two decades of intensive investigations, the true nature of high temperature (high-TcT_c) superconductivity observed in the cuprates remains elusive to the researchers. In particular, in the so-called `underdoped' region, the overall behavior of superconductivity deviates qualitativelyqualitatively from the standard theoretical description pioneered by Bardeen, Cooper and Schrieffer (BCS). Recently, the importance of phase fluctuation of the superconducting order parameter has gained significant support from various experiments. However, the microscopic mechanism responsible for the surprisingly soft phase remains one of the most important unsolved puzzles. Here, opposite to the standard BCS starting point, we propose a simple, solvable low-energy model in the strong coupling limit, which maps the superconductivity literally into a well-understood physics of superfluid in a special dilute bosonic system of local pairs of doped holes. In the prototypical material (La1δ_{1-\delta}Srδ_\delta)2_2CuO4_4, without use of any free parameter, a dd-wave superconductivity is obtained for doping above 5.2%\sim 5.2\%, below which unexpected incoherent pp-wave pairs dominate. Throughout the whole underdoped region, very soft phases are found to originate from enormous mass enhancement of the pairs. Furthermore, a striking mass divergence is predicted that dictates the occurrence of the observed quantum critical point. Our model produces properties of the superfluid in good agreement with the experiments, and provides new insights into several current puzzles. Owing to its simplicity, this model offers a paradigm of great value in answering the long-standing challenges in underdoped cuprates

    Large-Scale Monte Carlo Study of a Realistic Lattice Model for Ga_(1-x)Mn_xAs

    Full text link
    The properties of Mn-doped GaAs are studied at several doping levels and hole compensations, using a real-space Hamiltonian on an fcc lattice that reproduces the valence bands of undoped GaAs. Large-scale Monte Carlo (MC) simulations on a Cray XT3 supercomputer, using up to a thousand nodes, were needed to make this effort possible. Our analysis considers both the spin-orbit interaction and the random distribution of the Mn ions. The hopping amplitudes are functions of the GaAs Luttinger parameters. At the coupling J~1.2eV deduced from photoemission experiments, the MC Curie temperature and the shape of the magnetization curves are in agreement with experimental results for annealed samples. Although there are sizable differences with mean-field predictions, the system is found to be closer to a hole-fluid regime than to localized carriers

    Bio-Based Self-Healing Concrete for Sustainable and Durable Concrete Infrastructure

    Get PDF
    In this study, bio-self-healing concrete was manufactured using a natural phenomenon called microbial-induced calcium carbonate precipitation (MICP). The bacillus cereus bacteria isolated from Qatari soil was used for this purpose. These bacteria have endured the harsh weather of high temperatures, humidity, and alkaline soil conditions. Hence, are a potential candidate for long-term self-healing in concrete structures that are subjected to the climate of the Middle Eastern region. The bacteria were encapsulated in sodium alginate beads then the beads were added to the cement-sand mortar. The nutrients for bacteria such as urea, calcium nitrate, yeast extract, and calcium chloride were mixed in mortar as dry constituents. After curing for 28 days, cracks were artificially induced in the prismatic samples, which were reinforced with steel rebars at the tensile side. Samples were placed in water to instigate self-healing. It was observed that the bacteria healed the cracks up to 0.70 mm. It is concluded that the used bacteria are viable in the alkaline concrete matrix and capable of producing calcium carbonate

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Measurement of associated production of vector bosons and top quark-antiquark pairs in pp collisions at √s=7 TeV

    Get PDF
    PubMed ID: 23679709The first measurement of vector-boson production associated with a top quark-antiquark pair in proton-proton collisions at s √ =7  TeV is presented. The results are based on a data set corresponding to an integrated luminosity of 5.0  fb^−1 , recorded by the CMS detector at the LHC in 2011. The measurement is performed in two independent channels through a trilepton analysis of tt ¯ Z events and a same-sign dilepton analysis of tt ¯ V (V=W or Z ) events. In the trilepton channel a direct measurement of the tt ¯ Z cross section σ tt ¯ Z =0.28 [+0.14 −0.11]  (stat) [+0.06 −0.03]  (syst)  pb is obtained. In the dilepton channel a measurement of the tt ¯ V cross section yields σtt¯V=0.43 [+0.17 −0.15]  (stat) [+0.09 −0.07]  (syst)  pb . These measurements have a significance, respectively, of 3.3 and 3.0 standard deviations from the background hypotheses and are compatible, within uncertainties, with the corresponding next-to-leading order predictions of 0.137[+0.012 −0.016] and 0.306 [+0.031 −0.053]   pb

    Event shapes and azimuthal correlations in Z plus jets events in pp collisions at root s=7TeV^{√s=7 TeV}

    Get PDF
    is produced in association with jets in proton–proton collisions. The data collected with the CMS detector at the CERN LHC at s=7TeV^{√s=7 TeV} correspond to an integrated luminosity of 5.0 fb1^{-1}. The analysis provides a test of predictions from perturbative QCD for a process that represents a substantial background to many physics channels. Results are presented as a function of jet multiplicity, for inclusive Z boson production and for Z bosons with transverse momenta greater than 150 GeV, and compared to predictions from Monte Carlo event generators that include leading-order multiparton matrix-element (with up to four hard partons in the final state) and next-to-leading-order simulations of Z+1-jet events. The experimental results are corrected for detector effects, and can be compared directly with other QCD model
    corecore