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We demonstrate that the zero-temperature superconducting phase diagram of underdoped
cuprates can be quantitatively understood in the strong binding limit, using only the experimental
spectral function of the “normal” pseudo-gap phase without any free parameter. In the prototypical
(La1−xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical dop-
ing δc ∼ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation
involving local p-wave pairs. Near the critical doping, a enormous mass enhancement of the local
pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass
divergence is predicted at δc that dictates the occurrence of the observed quantum critical point
and the abrupt suppression of the Nernst effects in the nearby region.

PACS numbers: 74.72.-h, 74.20.Mn, 74.40.Kb, 74.20.Rp

Considering the enormous amount of research activi-
ties devoted to the problem of high-Tc superconductivity,
it is hardly an exaggeration to regard it as one of today’s
most important unsolved problems in physics. Specif-
ically in the underdoped region of cuprates, it is now
commonly accepted that the low carrier density in the
system necessarily leads to strong phase fluctuation of
the superconducting order parameter[1, 2] due to its con-
jugate nature to the number fluctuation. Consequently,
the transition temperature Tc is suppressed significantly
below the pairing energy scale that controls all essential
aspects of the standard theory of superconductivity[3].
The crucial role of phase fluctuation[2, 4, 5] has recently
gained strong support from various experiments[6–9] in
both the low-temperature superconducting state and the
‘normal state’ above the transition temperature Tc, and is
likely tied closely to many of the exotic properties[2, 10–
14] in this region.

Nonetheless, besides this general understanding, sev-
eral key issues remain puzzling in the underdoped re-
gion. In spite of an uneventful evolution of the one-
particle spectral function[13], the superfluid density re-
duces dramatically near the observed quantum critical
point (QCP)[15] (at the critical doping δc ∼ 5.2% for
doped La2CuO4), below which superconductivity ceases
to exist even at zero temperature. The current consider-
ation of phase fluctuation [2] would only indicate a softer
phase at lower carrier density, but offers no explanation
for the complete suppression of superconductivity at zero
temperature at δ < δc. Particularly in La2CuO4, δc is
quite far away from the antiferromagnetic (AF) phase
boundary, rendering the common consideration of com-
peting order unsatisfactory. This vanishing of supercon-
ductivity below δc, the nature of the QCP, the dramatic
reduction of superfluid density nearby, and the control-
ling factor of the value of δc, all remain challenging to
our basic understanding.

Perhaps the most puzzling observation is the sudden

suppression of the observed Nernst effect at T > Tc
around the same critical doping δc[16]. This indicates
that not only the long-range phase coherence, but also
the shorter-range phase coherence is lost near the QCP,
a phenomenon unexplainable via simple fluctuation sce-
nario, for example due to low dimensionality.

In this letter, we demonstrate that these puzzles can
be quantitatively understood in the strong binding limit
of local pairs of doped holes. We obtain the zero-
temperature underdoped phase diagram with no need for
any free parameter, other than the experimental one-
particle spectral function of the pseudo-gap “normal”
state. A kinetics-driven d-wave condensate is found at
δ > δc, with a largely enhanced bosonic mass, m∗ >
40me. In great contrast, ground states consisting of fluc-
tuating p-wave pairs are found at δ < δc, incapable of
sustaining a condensate. At δ = δc, a mass divergence
results from the degeneracy of local d- and p-wave sym-
metry, dictating the presence of the QCP. Correspond-
ingly, near the QCP δ ≥ δc, the diverging mass explains
the puzzling dramatic reduction of phase stiffness in both
long range and shorter range. Our study provides a novel
yet simple paradigm to the behavior of local pairs in un-
derdoped cuprates, and is expected to inspire new set of
experimental confirmation, as well as re-interpretation of
existing experimental observations.

Conceptually, a phase-fluctuation dominant supercon-
ductivity hosts relatively negligible amplitude fluctuation
of the order parameter at low energy/temperature. This
implies that the effective low-energy Hamiltonian for the
charge and pairing channels must have integrated out all
pair-breaking processes to conserve the amplitude of the
order parameter, for example, as in the x-y model[17].
The higher-energy pairing scale should then manifest it-
self only through a strong “pair-preserving” constraint of
the low-energy Hamiltonian. This is in perfect analogy to
the replacement of repulsion U of the Hubbard model by
a “no double occupancy” constraint in its lower energy
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FIG. 1: (Color online) Doping dependent band dispersion
obtained from experiment[26, 27] [dots in (a)], Eq.(1) [lines
in (a)], and the t-J model[28] (b), with chemical potential at
zero. (c) Corresponding τ , τ ′ and τ ′′ in the hole picture. (d)
Doping dependence of the effective mass of holes m∗h in the
major directions indicated by the arrows in the inset.

counterparts, say the t-J model. Consequently, a new
paradigm for the low-energy physics emerges at T ≤ Tc,
which differs completely from the emphasis of amplitude
fluctuation in the standard theories. In this new phys-
ical regime, the detail of the pairing mechanisms (AF
correlation[5, 18–21], spin-fluctuation[22], or formation
of bi-polaron[23]) are no longer essential. Instead, the
physics is now dominated by the effective kinetic energy
that controls the phase coherence. Since only one energy
scale is essential in this regime, the low-energy physics
should be universal and simple.

Below, we proceed to 1) obtain the effective kinetics of
the doped holes from the experimental one-particle spec-
tral function in the “normal state” pseudogap phase, 2)
derive the effective motion of tightly-bound pairs of holes
under the pair-preserving constraint, and 3) solve the re-
sulting bosonic problem to address the physical issues
quantitatively without any free parameter.

1) Effective kinetics The dots in Fig. 1(a) gives the dis-
persion of the main features in the experimental spectral
functions of the ”normal state” of (La1−xSrx)2CuO4 in
the pseudogap phase, obtained by angular-resolved pho-
toemission spectroscopy (ARPES)[26, 27]. One notices
immediately that the dispersion is strongly doping (δ)
dependent, especially near (π,0). Judging from the close
resemblance to the published t-J model solutions[28] in
Fig. 1(b), this strong band renormalization likely origi-
nates from the competition between the bare kinetic en-
ergy and the AF interaction. [29] The effective kinetics
of carriers can then be captured by the irreducible ki-
netic kernel τ ≡ G−1L − G−1 (in matrix notation and
in the hole picture) through the measured one-particle
propagator G and a reference non-propagating Green’s
function GL, defined with a single pole at the central en-
ergy of the band. The real part of the off-site elements of
τ thus controls the propagation of the carriers, just like

the effective hopping matrix elements. The imaginary
part of τ gives the decay of carriers and becomes large
at ω > 0.3 eV where the spectral function is broad and
quasiparticle description no longer applies. Since only
the average motion at long time scale is of significance in
this study, we will drop the imaginary part and represent
the average kinetics via

H =
∑
ii′

τii′c
†
i ci′ + h.c. (1)

for simplicity [24]. In this case, τii′ is equivalent to those
from a tight-binding fit of the experimental dispersion.

Note that this Hamiltonian is only meant to cap-
ture the average effective kinetics of the fully renormal-
ized one-particle propagator. It does not contain infor-
mation of the pairing interaction that connects to the
high-energy sector. The use of Hamiltonian representa-
tion here is merely for better clarity of the underlying
physics [24]. Furthermore, τ is to be distinguished from
the “bare” hopping parameter t commonly used in the
Hubbard or t-J model, as τ have fully absorbed the ef-
fects of interactions and constraints. Finally, the actual
carriers do not need to be quasi-particles, and their ”dif-
fusive” nature near (π,0) can be included by keeping the
full τ in the study [24, 25], and all our physical conclu-
sions below would remain.

The resulting doping dependent first, second and third
neighbor kernels, τ1, τ ′ and τ ′′, are shown in Figure 1(c),
and correspond to dispersion curves [lines in Fig. 1(a)]
comparable to the experimental ones. Interestingly, as
δ decreases, τ ′′ is found to increase steadily approaching
the value of τ ′, and then exceeds τ ′ right at δc! This is
apparently not a coincidence, and reveals an important
clue to the nature of the QCP to be discussed below.
Due to the strong AF correlation, the fully dressed τ1
is negligibly small at the underdoped regime and will
be dropped from our further analysis. As a reference,
Fig. 1(d) also shows a weakly doping dependent effective
mass of the doped holes, m∗h, for δ > 5.2% in three major
directions, consistent with the current lore[30].

2) Motion of Tightly-Bound Pairs Since it is unlikely
that doped holes can doubly occupy the same site in a
weakly doped AF Mott insulator, it is reasonable to as-
sume that under a strong binding, pairs mostly consist
of nearest neighboring holes. It is thus convenient to
employ a bosonic representation of pairs, b†ij = c†i↑c

†
j↓,

located at neighboring site i and j with opposite spin.
Such a real-space hole pair can result from numerous
high-energy mechanisms[5, 20, 21, 23], and is to be dis-
tinguished from the real-space singlet pair of electrons in
RVB-like constructions[31].

Now, consider the motion of a single pair of holes
(blue and red filled diamonds) located in the fermion lat-
tice in Fig. 2(a). Under the pair-preserving constraint,
only three potential destinations (empty diamonds) for
each hole are allowed, two via second neighbor hopping,
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FIG. 2: (Color online) Illustration of kinetic processes of a
pair of holes (filled diamond) to its six allowed destinations
(open diamonds) under the “pair-preserving” constraint (a),
through τ ′ (solid lines) and τ ′′ (dashed lines). The same is
equivalently represented by ellipsoids denoting a pair and its
allowed six neighbors (b). The yellow area denotes the ‘ex-
tended hardcore constraint’ that excludes other pairs.

τ ′, one via third neighbor hopping, τ ′′. Converting to
the lattice of bond-centered pairs in Fig. 2(b), one finds
a checkerboard lattice consisting of two nonequivalent
sites, each connecting to four first neighboring sites via
τ ′, but to only two second neighboring sites via τ ′′. This
pivoting motion of the paired holes can then be repre-
sented by

Hb =
∑
ii′j

τii′b
†
ijbi′j + h.c. (2)

The same motion was previously derived via a rigor-
ous separation of many-body Hilbert subspace of paired
holes [32]. Optionally, one can also include both the real
and imaginary part of τ via the equation of motion, or
the ladder diagrams [24, 25]. Although, inclusion of the
imaginary part of τ introduces broadening of the bosonic
propagator at higher energy, but has little effect on the
condensation taking place at low energy.

Note that the hole pairs b’s are under a strong ‘ex-
tended hardcore constraint’: b†ijb

†
i′j′ = 0 if i = i′ or

j = j′. This is inherited from the Pauli exclusion prin-
ciple of the original fermion operators and that double
occupancy of electrons are not allowed in the low-energy
sector. Indicated by the yellow area in Fig. 2(b), this
constraint forbids occupation by another pair at any of
the six potential hopping destinations of a pair. It can
be considered as an infinite short-range repulsion that
determines the bare scattering length between pairs, and
is responsible for stabilizing the bosonic system against
phase separation[33].

3) Results We diagonalize Eq.(2) first without the ex-
tended hardcore constraint, using a unit cell containing
four sites shown in Fig. 2(b). This choice explicitly allows
one s-, two p-, and one d-wave superposition within the
unit cell, and equates the doping level per unit cell in this
lattice and that in the standard fermion lattice. Fig. 3(c)
illustrates the resulting band structure in the supercon-
ducting phase at doping δ = 15% > δc. It shows that
at low enough temperature a Bose-Einstein condensate
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FIG. 3: (Color online) The band dispersion of the hole pairs
without the extended hardcore constraint, at δ < δc(a), δ =
δc(b), and δ > δc(c). (d) and (f) illustrates the dominant
kinetic process and the Wannier function corresponding to the
lowest band in (a) and (c) respectively. (e) Strongly enhanced
effective mass of the pairs m∗ and the mass of the holes, m∗h.

(BEC) would take place at a single minimum at momen-
tum q = 0, with a pure d-wave symmetry (red color).
As in standard dilute bosonic systems, one thus expects
a d-wave superfluid with finite stiffness, once a scatter-
ing length (derived primarily from the extended hardcore
constraint) is switched on.

The local d-wave structure of the pair is better illus-
trated in real space via the corresponding Wannier func-
tion in Fig. 3(f), computed from the Fourier transform of
the Bloch functions of the lowest band. The low-energy
pairs has clear d-wave symmetry with nodes along the
(π, π) directions of the standard Fermion lattice, in per-
fect agreement with the experimental observations.[13,
34, 35] (Notice in Fig. 2(a) that our fermionic lattice is
rotated by 45◦ from the usual convention.)

We stress that our resulting local d-wave symme-
try is completely driven by the fully screened kinetic
energy.[36, 37] It originates from the dominance of posi-
tive τ ′ of the local pair, which prefers energetically oppo-
site sign of the wave function across first neighbors, thus
favoring a d-wave symmetry [see Fig. 3(f)]. In compari-
son, the positive τ ′′ favors opposite sign across the second
neighbors, thus p-wave symmetry [see Fig. 3(d)]. There-
fore, τ ′ and τ ′′ compete by lowering the band energy of
d- and p-bands, respectively.

This explains the long-standing puzzle of lack of su-
perconductivity at lower doping (δ < δc). Since in this
region τ ′′ > τ ′ [c.f. Fig. 1(c)], Fig. 3(a) shows that local
p-wave pair has lower energy than d-wave pairs. Further-
more, in the checkerboard lattice in Fig. 2(b), the parity
of p-states dictates a line of degeneracy (green flat band
in Fig. 3) from (0,0) to (π,π). The pairs can therefore
populate any arbitrary state along this line without ever
forming a BEC. The system is thus composed of incoher-
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FIG. 4: (Color online) Experimental supports of predicted
mass divergence via (a) non-linear doping dependence of in-
verse penetration depth and (b) non-linear correlation be-
tween inverse penetration depth and transition temperature
Tc.

ent p-wave pairs, an effect of quantum phase fluctuation
beyond the original consideration of thermal phase fluc-
tuation [2].

The competition between d-wave and p-wave also offers
a natural explanation of the dramatic phase softness and
the low superfluid density of the underdoped cuprates.
Indeed, even near the optimal doping (δ ≈ 15%), the
comparable value of τ ′′ and τ ′ leads to a large effective
mass of the pair m∗ = (h̄2/l2)d2εk/dk

2 ≈ 12m∗h ≈ 59me

(l being the lattice constant). This gives a rather long

penetration depth λ =
√

m∗c2

4πe2ns
≈ 7000Å (taking ns ∼ δ

per unit cell), in reasonable agreement with the experi-
mental value [38]. Furthermore, as δ decrease toward δc,
τ ′′ grows to the value of τ ′, reducing the separation of
the d-band and the p-band, and in turn flattening the
d-band. The effective mass of the d band thus increases
significantly (Fig. 3(e)), consequently giving rise to the
observed very small phase stiffness.

This analysis reveals the simple yet exotic nature of the
observed QCP at the end of the underdoped supercon-
ductivity region δc = 5.2%: It is dictated by the diverg-
ing effective mass of the local pairs [Fig. 3(e)]. At this
point τ ′ = τ ′′ and the d-wave and p-wave pairs become
locally degenerate and the d-band is thus completely flat,
as shown in Fig. 3(b). Since the effective mass now di-
verges, the pairs can no longer propagate and align the
phase to develop a condensate. In essence, it is the per-
fect quantum interference between τ ′ and τ ′′ that renders
the local pairs immobile, and in turn disables the phase
coherence of superconductivity.

This result also explains nicely the puzzling dramatic
suppression of diamagnetic response [39] and Nernst sig-
nal [16] near δc. Indeed, within phase fluctuation sce-
nario, a divergent mass might be the only way to com-
pletely suppress the shorter-range coherence responsible
for a strong diamagnetic response.

Our predicted mass divergence near QCP is actu-
ally strongly supported by experimental measurements of
penetration depth λ of the underdoped YBa2Cu3Oy sam-
ples. Figure 4(a) shows that over the entire underdoped
region, the measured λ−2 [40] deviates significantly from

the simple λ−2 ∝ δ relationship to be expected with a
constant effective mass. On the other hand, our theory
with large doping-dependent effective mass reproduces
very nicely the experimental observation. A even more
direct evidence is provided by the recent measurement
on the extremely underdoped YBa2Cu3Oy samples near
the QCP [7]. The observed relationship between low-
temperature λ−2 and Tc in Fig. 4(b) shows a strong non-
linear dependence. In fact, the same behavior has also
been observed via mutual inductance[41]. The zero slope
at λ→ 0 can be interpreted as an indirect evidence of the
mass divergence, and our theory reproduces very nicely
the experimental observation [42].

Our analysis has wide scope of implications in the elec-
tronic structure of the underdoped cuprates that deserve
further investigations. As δ decreases toward δc, the di-
verging mass makes perfect sense to the observed dra-
matic enhancement of the isotope effect[43], as coupling
to the slower lattice degree of freedoms is more effec-
tively for heavier pairs. Similarly, together with mass en-
hancement, the proximity to the incoherent local p-wave
[c.f.:Fig. 3(c)] allows the observed increase of residual
specific heat[44]. Given their finite amplitude along the
d-wave nodal directions [c.f.:Fig. 3(d)(f)], the enhanced
fluctuation to local p-wave pairs also can explain the re-
cently observed pseudogap along the nodal direction [45]
in heavily underdoped samples. At δ < δc, the infinite
degeneracy of the incoherent p-wave along the antinodal
directions [c.f.:Fig. 3(a)], with their infinite mass and un-
usually enhanced scattering, gives a new paradigm to the
insulating [46] glassy [47] electronic structure and the
non-fermi-liquid transport [48] Our result suggests that
the system is glassy not only in the spin channel, but
also in the charge and pairing channel as well. Obvi-
ously, our theory is consistent with the observed charge
2e quanta across the superconducting-insulating transi-
tion [49], which raised the serious issue ”How can a sys-
tem of charge 2e bosons be insulating? If it is just Ander-
son localization, how can δc not present strong sensitivity
to disorder?” Our result provides a long-sought disorder-
insensitive alternative paradigm. Finally, it is curious to
notice, across δc, the same 45◦ rotation in the directions
of the dominant hopping, the nodal structure of local
pairs, and the observed stripe correlation [50].

In conclusion, we demonstrate that all the key features
of superconductivity in the underdoped cuprates can be
described quantitatively in the strong binding limit, with-
out use of any free parameter. The d-wave symmetry is
found to originate from the renormalized kinetic energy,
and the observed superconductivity can be understood
as a superfluid of a dilute real-space hole pairs. Our
result explains the lack of superconductivity at δ < δc
due to quantum fluctuation associated with incoherent
local p-wave pairs. In the underdoped regime, a large
effective mass enhancement of the hole pairs is found re-
sponsible for the observed weak phase stiffness. Finally,
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the observed δ = 5.2% QCP is found dictated by the
divergence of the effective mass of the hole pairs, which
also make sense the dramatic reduction of diamagnetic
response (the Nernst effect) near the QCP. These suc-
cesses support strongly a simple description of bosonic
condensate for the underdoped cuprates and enable fur-
ther reconciliation of seemingly contradicting experimen-
tal conclusions in the field.
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34722 Istanbul, Turkey

† corresponding email: weiku@bnl.gov
[1] S. Doniach and M. Inui, Phys. Rev. B 41, 6668 (1990).
[2] V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).
[3] J. R. Schrieffer, Theory of Superconductivity (Benhamin,

New York, 1964).
[4] E. W. Carlson, S. A. Kivelson, V. J. Emery, and E.

Manousakis, Phys. Rev. Lett. 83, 612 (1999).
[5] A. Mihlin and A. Auerbach, Phys. Rev. B 80, 134521

(2009).
[6] Samuele Sanna, Francesco Coneri, Americo Rigoldi,

Giorgio Concas, and Roberto De Renzi, Phys. Rev. B
77, 224511 (2008).

[7] D. M. Broun, W. A. Huttema, P. J. Turner, S. Ozcan, B.
Morgan, Ruixing Liang, W. N. Hardy, and D. A. Bonn,
Phys. Rev. Lett. 99, 237003 (2007).

[8] W. N. Hardy, D. A. Bonn, D. C. Morgan, Ruixing Liang,
and Kuan Zhang, Phsy. Rev. Lett. 70, 3999 (1993).

[9] Recent claims of suitability of Gaussian fluctuation in
fitting torque magnetometry are in clear contradiction
with the direct penetration depth measurement, and de-
mand further experimental resolution. See for example I.
Kokanovic̀, et al., Phys. Rev. B 88, 060505(R), (2013).

[10] Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and
O. Fischer, Phys. Rev. Lett. 80, 149 (1998).

[11] J. Corson, R. Mallozzi, J. Orenstein, J. N. Eckstein and
I. Bozovic, Nature 398, 221 (1999).

[12] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
[13] A. Damascelli, Z. X. Shen and Z. Hussain, Rev. Mod.

Phys. 75, 473 (2003).
[14] M. Le Tacon1,2, A. Sacuto, A. Georges, G. Kotliar, Y.

Gallais, D. Colson and A. Forget, Nature 2, 537 (2006).
[15] Subir Sachdev, Science 288, 475 (2000).
[16] Y. Wang, L. Li and N. P. Ong, Phys. Rev. B 73, 024510

(2006).
[17] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6 (1973)

1181; J.M. Kosterlitz, J. Phys. C 7 (1974) 1046.
[18] P. W. Anderson, Science 316, 1705 (2007).
[19] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett,

57,1362 (1986).
[20] Ch. Niedermayer, C. Bernhard, T. Blasius, A. Golnik, A.

Moodenbaugh, and J. I. Budnick, Phys. Rev. Lett. 80,
3843 (1998).

[21] Elbio Dagotto, A.Nazarenko, A. Moreo, Phys. Rev. Lett.
74, 310 (1995).

[22] K. Miyake, S. Schmitt-Rink, C.M. Varma, Phys. Rev. B
34, 6554 (1986). Moriya, T., Takahashi, Y. Ueda, K. J.
Phys. Soc. Jpn 52, 2905 (1990).

[23] A. Alexandrov, Theory of Superconductivity from Weak
to Strong Coupling, (Bristol&Philadelphia, 2003, 320 p).

[24] See EPAPS Document No. for alternative derivations of
the pivoting motion of the hole pairs.

[25] Chi-Cheng Lee, Xiaoqian M. Chen, Yu Gan, Chen-Lin
Yeh, H. C. Hsueh, Peter Abbamonte, and Wei Ku, Phys.
Rev. Lett. 111, 157401 (2013).

[26] A. Ino, et al, Phys. Rev. B 62, 4137 (2000); Phys. Rev.
B 65, 094504 (2002).

[27] T. Yoshida, et al, Phys. Rev. B 74, 224510 (2006); Phys.
Rev. Lett. 103, 037004 (2009).

[28] Wei-Guo Yin, Chang-De Gong and P. W. Leung, Phys.
Rev. Lett. 81, 2534 (1998).

[29] The higher-energy pseudogap renormalizes the kinetics
signifiantly, and in turn affects the superfluid phase stiff-
ness. This is to be distinguished from the reduced super-
fluid density due to pseudogap surpressed Fermi surface
spectral weight in the weak-coupling scenario.

[30] W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S.
Ono, Kouji Segawa, Seiki Komiya, Yoichi Ando, and D.
N. Basov, Phys. Rev. B 72, 060511(R) (2005).

[31] P. W. Anderson, Science 235 , 1196 (1987).
[32] Yucel Yildirim and Wei Ku, Phys. Rev. X 1, 011011

(2011).
[33] H. A. Beth, Z. Physik 71, 205 (1931).
[34] T. Yoshida, et al., Phys. Rev. Lett. 91, 027001 (2003).
[35] K. M. Shen, et al., Science 307 , 901 (2005).
[36] This is compatible to a previous study of the t′-J model.

R. M. Fye, G. B. Martins and E. Dagotto, Phys. Rev. B
69, 224507 (2004).

[37] Gain in the effective kinetic energy of the pairs should
lower the bare kinetic energy of the system as well. J.E.
Hirsch, Mod. Phys. Lett. B 25, 2219 (2011).

[38] Kathleen M. Paget, Sabyasachi Guha, Marta Z. Cieplak,
Igor E. Trofimov, Stefan J. Turneaure, and Thomas R.
Lemberger, Phys. Rev. B 59, 641 (1999).

[39] Yayu Wang, Lu Li, M. J. Naughton, G. D. Gu, S. Uchida,
and N. P. Ong, Phys. Rev. Lett. 95, 247002 (2005).

[40] J. E. Sonier, et al., Phy. Rev. B 76, 134518 (2007).
[41] Yuri Zuev, Mun Seog Kim, and Thomas R. Lemberger,

Phys. Rev. Lett. 95, 137002 (2005).
[42] Tc is determined by thermally exhausting all the pairs∫

µ
dωDOS(ω)/(eβ(Tc)ω − 1) = δ.

[43] D. J. Pringle, G. V. M. Williams and J. L. Tallon, Phys.
Rev. B 62, 12527 (2000).

[44] Hai-Hu Wen, Zhi-Yong Liu, Fang Zhou, Jiwu Xiong,
Wenxing Ti, Tao Xiang, Seiki Komiya, Xuefeng Sun, and
Yoichi Ando, Phys. Rev. B 70,214505 (2004).

[45] I. M. Vishik, et al., PNAS 109, 18332 (2012); E. Razzoli
et al., Phys. Rev. Lett. 110, 047004 (2013).

[46] Xiaoyan Shi, G. Logvenov, A. T. Bollinger, I. Bozovic,
C. Panagopoulos and Dragana Popovic, Nat. Mat. 12,
47, (2013).

[47] J. H. Cho, F. C. Chou, and D. C. Johnston, Phys. Rev.
Lett. 70, 222 (1993); F. C. Chou, F. Borsa, J. H. Cho,
D. C. Johnston, A. Lascialfari, D. R. Torgeson, and J.
Ziolo, Phys. Rev. Lett. 71, 2323 (1993);

[48] M. Gurvitch, and A. T. Fiory, Phys. Rev. Lett. 59, 1337



6

(1987); S. Martin, A. T. Fiory, R. M. Fleming, L. F.
Schneemeyer, and J. V. Waszczak, Phys. Rev. B, 41,
846(R) (1990).

[49] A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Mis-
ewich, Nature 472, 458 (2011); D. Mandrus, L.Forro,
C. Kendziora, and L. Mihaly, Phys. Rev. B 44, 2418(R)
(1991); D.J.C. Walker, A.P. Mackenzie, and J.R. Cooper,
Phys. Rev. B 51, 15653 (1995); Xiang Leng, Javier

Garcia-Barriocanal, Shameek Bose, Yeonbae Lee, and A.
M. Goldman, Phys. Rev. Lett. 107, 027001 (2011).

[50] Robert J. Birgeneau, Chris Stock, John M. Tranquada,
and Kazuyoshi Yamada, J. Phy. Soc. Jap. 75, 111003
(2006); M. Enoki, M. Fujita, T. Nishizaki, S. Iikubo, D.
K. Singh, S. Chang, J. M. Tranquada, and K. Yamada,
Phys. Rev. Lett. 110, 017004 (2013).


	 References

