29 research outputs found

    Genome-wide identification of long intergenic non-coding RNAs of responsive to powdery mildew stress in wheat (Triticum aestivum)

    Get PDF
    Wheat powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most serious foliar diseases of wheat, causing grain yield and quality degradation by affecting plant photosynthesis. It is an effective method to improve the disease resistance of wheat plants by molecular breeding. With the continuous development of sequencing technology, long intergenic noncoding RNAs (lincRNAs) have been discovered in many eukaryotes and act as key regulators of many cellular processes. In this study, 12 sets of RNA-seq data from wheat leaves pre- and post-pathogen infection were analyzed and 2,266 candidate lincRNAs were identified. Consistent with previous findings, lincRNA has shorter length and fewer exons than mRNA. The results of differential expression analysis showed that 486 DE-lincRNAs were selected as lincRNAs that could respond to powdery mildew stress. Since lincRNAs may be functionally related to their adjacent target genes, the target genes of these lincRNAs were predicted, and the GO and KEGG functional annotations of the predicted target genes were performed. Integrating the functions of target genes and the biological processes in which they were involved uncovered 23 lincRNAs that may promote or inhibit the occurrence of wheat powdery mildew. Co-expression patterns of lincRNAs with their adjacent mRNAs showed that some lincRNAs showed significant correlation with the expression patterns of their potential target genes. These suggested an involvement of lincRNAs in pathogen stress response, which will provide a further understanding of the pathogenic mechanism of wheat powdery mildew

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Cumulative Effect and Content Variation of Toxic Trace Elements in Human Hair around Xiaoqinling Gold Mining Area, Northwestern China

    No full text
    The harm of toxic trace element polluted living environments to human health in mining areas has attracted extensive attention. In this study, human hair samples from a toxic trace element polluted area (village A) in a mineral processing area collected in 2015 and 2019 were studied in detail and the nonpolluted human hair samples from a contrast area (village B) with a relatively clean environment were also collected for comparison. The Hg and As in human hair samples were analyzed by Atomic Fluorescence Spectrometry (AFS) and the Pb, Cd, Cr, and Cu in human hair samples were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The single cumulative index (Pi) and the Nemerrow index (Pz) were used to evaluate the single and comprehensive cumulative pollution index. The results indicated that the average toxic trace element contents in human hair from different ages in the polluted area exhibited certain statistical significance. The average single cumulative indexes indicated a significant accumulation of Hg, Pb, and Cd in human hair of both genders and different ages from the polluted area, and the comprehensive cumulative pollution indexes revealed higher accumulation of toxic trace elements in the hair of males than in females. In general, the content of toxic trace elements in human hair from polluted area was still growing in accumulation. The high content of toxic trace elements in human hair shows a notable correlation with human health, and the environmental pollution in gold mining areas is seriously harmful to human health

    The Impacts of Molybdenum Exploration on Cd and Zn Contents in Surface Water: Evidence from a Molybdenum Mine in the Xiaoqinling Mountains

    No full text
    In order to study the impact of molybdenum ore development in a large molybdenum mining area in the Xiaoqinling Mountains on the water and sediment quality of the Wenyu stream, surface water, sediment, and surrounding rock samples were collected, and the Cd and Zn contents were analyzed. The pollution status and ecological risk degree of river water and sediment samples in the Wenyu stream watershed were evaluated using the single element pollution index method, geoaccumulation index method, Hakanson potential ecological risk assessment method, potentially toxic elements (PTEs) health risk assessment, and PTEs pollution comprehensive index method. Finally, the impact of mining development on the contents of Cd and Zn in the Wenyu stream were discussed, and the sources of pollution were identified. The study revealed that the levels of Cd and Zn in 23 water samples collected from the primary channel of the Wenyu stream were markedly higher compared to the unaffected contrast area. Similarly, the concentrations of Cd and Zn in the 17 sediment samples were significantly elevated compared to the average values in the reference area. These findings indicated that The Wenyu stream was heavily impacted by the molybdenum mining activities, resulting in a high ecological risk associated with the sediment in the primary channel. Acid mine drainage in the mining area, sediment release activities, and atmospheric dust fall are considered to be the main sources of PTEs polluting the Wenyu stream watershed. Relevant personnel should complete a thorough river water quality investigation and perform ecological environment restoration so as to ensure sustainable economic development

    Influence of Brown’s Gas on Cracking Behavior of Gas-Phase Tar during Pine Wood Pyrolysis

    No full text
    The effect of Brown’s gas on the gas-phase tar cracking behavior, carbonic oxide (CO) production rate, and gaseous product temperature during the pine wood pyrolysis was preliminarily explored. By the application of cold trapping and gravimetric methods, it was found that Brown’s gas reduces the energy barrier of thermochemical conversion for gas-phase tar, widens the temperature range of gas-phase tar accelerated cracking, and increases the cracking rate. When the pyrolysis temperature increases by 1 °C, the average cracking rate of gas-phase tar increases from C = 4.58 g⋅Nm−3 (flow volume ratio of Brown’s gas to nitrogen, X(Brown’s gas):N2 = 0%) to C = 4.8 g⋅Nm−3 (X:N2 = 1%) and C = 5.02 g⋅Nm−3 (X:N2 = 5%). While participating in the deep cracking of gas-phase tar, Brown’s gas reduces the conversion energy barrier of the gas-phase tar to CO. The CO production rate rises from the initial 1.87% (X:N2 = 0%) to 4.22% (X:N2 = 1%) and 5.52% (X:N2 = 5%) per 1 °C of increased pyrolysis temperature. The consumption of Brown’s gas is 0.32 m3 per 1 g⋅Nm−3 of gas-phase tar cracking within the pyrolysis residence time of 30 min

    Near-Infrared Spectroscopic Study of Heavy-Metal-Contaminated Loess Soils in Tongguan Gold Area, Central China

    No full text
    Loess soil is a kind of widespread soil type in northwest China. Human engineering activities such as mining have caused numerous problems related to heavy metal pollution in soils, which threaten people’s health. The band formation mechanism of the near-infrared (NIR) spectral features in loess soils forms the theoretical basis for the study of the soil environment by hyperspectral remote sensing. Some NIR features of loess soils will shift because of the variations of the soil composition and microstructure after they adsorb heavy metal cations. In this study, we focused on the heavy metal adsorption of the illite, smectite, and illite–smectite (I/S) mixed layer in loess soils; evaluated the pollution by Nemerow indexing; applied X-ray diffraction (XRD), mid-infrared (MIR) spectral analysis, and inductively coupled plasma mass spectrometry (ICP-MS); and carefully observed the shift behavior of the MIR and NIR features. Then, the NIR bands were assigned to MIR bands according to the vibration behavior. Furthermore, the relationships between the NIR band positions and the six heavy metal cations as well as the Nemerow index were investigated via multiregression and simple linear correlation methods. Finally, the relationship obtained from the experiments was analyzed using the physical and chemical mechanisms of the heavy metal cations in the clay minerals. These findings may benefit the application of NIR and remote sensing techniques for detecting heavy-metal-polluted soils

    Risk Assessment and Control of Geological Hazards in Towns of Complex Mountainous Areas Based on Remote Sensing and Geological Survey

    No full text
    Mountainous areas have become among the most developed areas of geological hazards due to special geological environmental conditions and intensive human engineering activities. Geological hazards are a main threat to urbanization, rural revitalization, and new rural construction in complex mountainous areas. It is of great strategic significance to conduct large-scale geological hazard investigation and risk assessment in urban areas, control the risk of geological hazards at the source and propose risk control measures. In this paper, we established the technical methods of geologic hazard risk assessment and control in complex mountain towns by taking Longlin Town in the mountainous region of Gansu Longnan, China as the study area, with the Quanjia bay debris flows and Panping Village landslides as the typical pilot investigation and assessment. The methods consist of six stages—risk identification, hazard disaster model investigation, risk analysis, vulnerability assessment, risk evaluation and risk management and control measures and proposals. On this basis, the results of geological hazards with different precipitation frequencies (5%, 2%, 1%) are presented. The results show that 75.23% of the regions remained at low risk levels; 24.38% of the regions increased a risk level with decreasing precipitation frequency, and 0.39% of the regions remained at extremely high risk levels under different precipitation frequency conditions. For the Quanjia bay debris flows and Panping Village landslides case, we discussed the geological hazards risk source control contents, management and control technologies, engineering and non-engineering measures of disaster prevention and control for urban disasters and specific disaster areas. This research can provide technical support and reference for disaster prevention and mitigation, and territorial spatial planning

    Heavy Metals in Surface Soils in the Upper Reaches of the Heihe River, Northeastern Tibetan Plateau, China

    No full text
    The upper reaches of the Heihe River have been regarded as a hotspot for phytoecology, climate change, water resources and hydrology studies. Due to the cold-arid climate, high elevation, remote location and poor traffic conditions, few studies focused on heavy metal contamination of soils have been conducted or reported in this region. In the present study, an investigation was performed to provide information regarding the concentration levels, sources, spatial distributions, and environmental risks of heavy metals in this area for the first time. Fifty-six surface soil samples collected from the study area were analyzed for Cr, Mn, Ni, Cu, Zn, As, Cd and Pb concentrations, as well as TOC levels. Basic statistics, concentration comparisons, correlation coefficient analysis and multivariate analyses coupled with spatial distributions were utilized to delineate the features and the sources of different heavy metals. Risk assessments, including geoaccumulation index, enrichment factor and potential ecological risk index, were also performed. The results indicate that the concentrations of heavy metals have been increasing since the 1990s. The mean values of each metal are all above the average background values in the Qinghai Province, Tibet, China and the world, except for that of Cr. Of special note is the concentration of Cd, which is extremely elevated compared with all background values. The distinguished ore-forming conditions and well-preserved, widely distributed limestones likely contribute to the high Cd concentration. Heavy metals in surface soils in the study area are primarily inherited from parent materials. Nonetheless, anthropogenic activities may have accelerated the process of weathering. Cd presents a high background concentration level and poses a severe environmental risk throughout the whole region. Soils in Yinda, Reshui daban, Kekeli and Zamasheng in particular pose threats to the health of the local population, as well as that of livestock and wildlife
    corecore