45 research outputs found

    The dihydropyridine calcium channel blocker benidipine prevents lysophosphatidylcholine-induced endothelial dysfunction in rat aorta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lysophosphatidylcholine (LPC), an atherogenic component of oxidized low-density lipoprotein, has been shown to induce the attenuation of endothelium-dependent vascular relaxation. Although benidipine, a dihydropyridine-calcium channel blocker, is known to have endothelial protective effects, the effects of benidipine on LPC-induced endothelial dysfunction remain unknown. We examined the effects of benidipine on the impairment of endothelium-dependent relaxation induced by LPC.</p> <p>Methods</p> <p>Benidipine was administered orally to rats and aortas were then isolated. Aortic rings were treated with LPC and endothelial functions were then evaluated. Additionally, the effects of benidipine on intracellular calcium concentration ([Ca<sup>2+</sup>]<sub>i</sub>) and membrane fluidity altered by LPC in primary cultured rat aortic endothelial cells were examined. [Ca<sup>2+</sup>]<sub>i </sub>was measured using the fluorescent calcium indicator fura-2. Membrane fluidity was monitored by measuring fluorescence recovery after photobleaching.</p> <p>Results</p> <p>Treatment with LPC impaired endothelial function. Benidipine prevents the impairment of relaxation induced by LPC. Acetylcholine elicited an increase in [Ca<sup>2+</sup>]<sub>i </sub>in fura-2 loaded endothelial cells. The increase in [Ca<sup>2+</sup>]<sub>i </sub>was suppressed after exposure to LPC. Plasma membrane fluidity increased following incubation with LPC. Benidipine inhibited the LPC-induced increase in membrane fluidity and impairment of increase in [Ca<sup>2+</sup>]<sub>i</sub>.</p> <p>Conclusion</p> <p>These results suggest that benidipine inhibited LPC-induced endothelial dysfunction by maintaining increase in [Ca<sup>2+</sup>]<sub>i</sub>. Benidipine possesses membrane stabilization properties in LPC-treated endothelial cells. It is speculated that the preservation of membrane fluidity by benidipine may play a role in the retainment of calcium mobilization. The present findings may provide new insights into the endothelial protective effects of benidipine.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Tri11, tri3, and tri4 genes are required for trichodermin biosynthesis of Trichoderma brevicompactum

    No full text
    Abstract Trichoderma brevicompactum and T. arundinaceum both can synthesize trichodermin with strong antifungal activity and high biotechnological value. The two Trichoderma species have a tri cluster, which includes seven genes (tri14, tri12, tri11, tri10, tri3, tri4, and tri6) that encode transport and regulatory enzymes required for the biosynthesis of trichodermin. Here, we isolated T. brevicompactum 0248 transformants with disrupted tri11, tri4, or tri3 gene. We also described the effect of tri11, tri3, or tri4 deletion on the expression of other genes in the tri cluster. Targeted Δtri3 knockout mutant exhibited a sharp decline in the production of trichodermin, and trichodermol, which is a substrate for trichodermin production, accumulated. Thus, the results demonstrated that tri3 was responsible for the biosynthesis of trichodermin, and the tri3 gene-encoded enzyme catalyzed the acetylation reaction of the hydroxy group at C-4 of the trichodermin skeleton. In addition, tri4 and tri11 deletion mutants were generated to evaluate the roles of tri4 and tri11 in trichodermin biosynthesis, respectively. Deletion mutant strain Δtri4 or Δtri11 did not produce trichodermin in T. brevicompactum, indicating that tri4 and tri11 are essential for trichodermin biosynthesis. This is the first to report the function of tri3, tri4 and tri11 in T. brevicompactum, although the role of tri4 and tri11 has already been described for T. arundinaceum by Cardoza et al. (Appl Environ Microbiol 77:4867–4877, 2011)

    Cytotoxic Effects of Darinaparsin, a Novel Organic Arsenical, against Human Leukemia Cells

    No full text
    To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T&ndash;cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of &gamma;H2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer

    Cytotoxic Effects of Darinaparsin, a Novel Organic Arsenical, against Human Leukemia Cells

    No full text
    To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T–cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of γH2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer
    corecore