79 research outputs found

    Phase-Modulated Elastic Properties of Two-Dimensional Magnetic FeTe: Hexagonal and Tetragonal Polymorphs

    Full text link
    Two-dimensional (2D) layered magnets, such as iron chalcogenides, have emerged these years as a new family of unconventional superconductor and provided the key insights to understand the phonon-electron interaction and pairing mechanism. Their mechanical properties are of strategic importance for the potential applications in spintronics and optoelectronics. However, there is still lack of efficient approach to tune the elastic modulus despite the extensive studies. Herein, we report the modulated elastic modulus of 2D magnetic FeTe and its thickness-dependence via phase engineering. The grown 2D FeTe by chemical vapor deposition can present various polymorphs, i.e. tetragonal FeTe (t-FeTe, antiferromagnetic) and hexagonal FeTe (h-FeTe, ferromagnetic). The measured Young's modulus of t-FeTe by nanoindentation method showed an obvious thickness-dependence, from 290.9+-9.2 to 113.0+-8.7 GPa when the thicknesses increased from 13.2 to 42.5 nm, respectively. In comparison, the elastic modulus of h-FeTe remains unchanged. Our results could shed light on the efficient modulation of mechanical properties of 2D magnetic materials and pave the avenues for their practical applications in nanodevices.Comment: 19 pages, 4 figure

    Measuring sustainability:Development and application of the Inclusive Wealth Index in China

    Get PDF
    It is increasingly common to use the Inclusive Wealth Index (IWI) to evaluate national sustainability; however, IWI's highly aggregated components and limited regional cases restrict its further application in achieving the Sustainable Development Goals (SDGs). This study extends the traditional three-component IWI framework into six disaggregated components, namely male/female human capital, advanced/ordinary produced capital, and renewable/non-renewable natural capital. We apply the modified framework to China and evaluate the sustainability performance at the provincial level. The results show that China continues to develop with an annual IWI per capita increase rate of 2.3%. Gender inequality is found to hinder the growth of IWI, whereas advanced product features benefit the growth of IWI. The results also suggest significant heterogeneity in provincial IWI primarily due to differences in economic development stages, geographic locations, and uneven IWI growth. IWI growth is largely driven by wealth accumulation resulting from human capital and advanced produced capital. In contrast, insufficient IWI growth is caused by a substantial amount of ordinary produced capital or a continued decline in natural capital. The study provides a basis for tracking progress toward the SDGs and measuring the heterogeneity of regional socio-economic development in China

    Metal-to-Insulator Switching in Quantum Anomalous Hall States

    Full text link
    After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator (TI) films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the 6 quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is realized through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. In addition, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications

    Pressure-Modulated Structural and Magnetic Phase Transitions in Two-Dimensional FeTe: Tetragonal and Hexagonal Polymorphs

    Full text link
    Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions through comparing two distinct symmetries, i.e., tetragonal (t-) and hexagonal (h-) FeTe. We found that 2D t-FeTe presented the pressure-induced transition from antiferromagnetic to ferromagnetic states at ~ 3 GPa, corresponding to the tetragonal collapse of layered structure. Contrarily, ferromagnetic order of 2D h-FeTe was retained up to 15 GPa, evidently confirmed by electrical transport and Raman measurements. Furthermore, the detailed P-T phase diagrams of both 2D t-FeTe and h-FeTe were mapped out with the delicate critical conditions. We believe our results can provide a unique platform to elaborate the extraordinary physical properties of Fe-chalcogenides and further to develop their practical applications.Comment: 22 Pages, 5 Figure

    Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells

    Get PDF
    Background Increased cell mobility is a signature when tumor cells undergo epithelial-to-mesenchymal transition. TGF-β is a key stimulating factor to promote the transcription of a variety of downstream genes to accelerate cancer progression and metastasis, including osteopontin (OPN) which exists in several functional forms as different splicing variants. In non-small cell lung cancer cells, although increased total OPN expression was observed under various EMT conditions, the exact constitution and the underlining mechanism towards the generation of such OPN splicing isoforms was poorly understood. Methods We investigated the possible mechanisms of osteopontin splicing variant and its role in EMT and cancer metastasis using NSCLC cell line and cell and molecular biology techniques. Results In this study, we determined that OPNc, an exon 4 excluded shorter form of Opn gene products, appeared to be more potent to promote cell invasion. The expression of OPNc was selectively increased to higher abundance during EMT following TGF-β induction. The switching from OPNa to OPNc could be enhanced by RUNX2 (a transcription factor that recognizes the Opn gene promoter) overexpression, but appeared to be strictly in a HDAC dependent manner in A549 cells. The results suggested the increase of minor splicing variant of OPNc required both (1) the enhanced transcription from its coding gene driven by specific transcription factors; and (2) the simultaneous modulation or fluctuation of the coupled splicing process that depends to selective classed of epigenetic regulators, predominately HDAC family members

    Dynamic Sealing Behavior of Sand Self-Juxtaposition Windows on a Trap-Bounding Fault in a Natural Gas Storage Site

    Get PDF
    AbstractAn understanding of across-fault seals is essential for planning an injection/production strategy for a fault-bounded gas storage site. In addition, it is more likely to permit lateral leakage for a fault with sand self-juxtaposition windows. This paper is aimed at identifying the dynamic sealing behaviors of a sand self-juxtaposition fault on the geological and gas injection timescales. Banzhongbei gas storage site, China, was taken as a target area, and fault seals and hydrocarbon distributions within the original reservoirs were studied. The results showed that across-fault pressure differences of 0.085~0.146 MPa (equivalent to 41.6~71.5 m oil-column and 27.0~46.4 m gas-column heights) were supported by sand self-juxtaposition windows on the B816 fault, and the resultant absolute permeability (5.97×10−2~5.69×10−1 mD) of the fault was nearly 3~4 orders of magnitude lower than the average absolute permeability of reservoirs (1.16×102 mD). Gas composition contrasts, between the original and injection gas coupled with dynamic pressure monitoring data, indicated that lateral leakage occurred across sand self-juxtaposition windows under the condition of high across-fault pressure difference. However, the low-permeability fault showed strong negative influence on the efficiency of fluid flow in the model calculations and prolongs the timescales of pressure-difference decayed as much as 5 orders of magnitude relative to those of nonfault model calculations. These modeled dynamic sealing behaviors of sand self-juxtaposition windows may lead to a better understanding of the relative retardation of across-fault gas flow by weak sealing faults on the gas injection/production timescale

    Skeletal Muscle Regeneration on Protein-Grafted and Microchannel-Patterned Scaffold for Hypopharyngeal Tissue Engineering

    Get PDF
    In the field of tissue engineering, polymeric materials with high biocompatibility like polylactic acid and polyglycolic acid have been widely used for fabricating living constructs. For hypopharynx tissue engineering, skeletal muscle is one important functional part of the whole organ, which assembles the unidirectionally aligned myotubes. In this study, a polyurethane (PU) scaffold with microchannel patterns was used to provide aligning guidance for the seeded human myoblasts. Due to the low hydrophilicity of PU, the scaffold was grafted with silk fibroin (PU-SF) or gelatin (PU-Gel) to improve its cell adhesion properties. Scaffolds were observed to degrade slowly over time, and their mechanical properties and hydrophilicities were improved through the surface grafting. Also, the myoblasts seeded on PU-SF had the higher proliferative rate and better differentiation compared with those on the control or PU-Gel. Our results demonstrate that polyurethane scaffolds seeded with myoblasts hold promise to guide hypopharynx muscle regeneration

    Cytoplasmic Skp2 Expression Is Increased in Human Melanoma and Correlated with Patient Survival

    Get PDF
    BACKGROUND: S-phase kinase protein 2 (Skp2), an F-box protein, targets cell cycle regulators via ubiquitin-mediated degradation. Skp2 is frequently overexpressed in a variety of cancers and associated with patient survival. In melanoma, however, the prognostic significance of subcellular Skp2 expression remains controversial. METHODS: To investigate the role of Skp2 in melanoma development, we constructed tissue microarrays and examined Skp2 expression in melanocytic lesions at different stages, including 30 normal nevi, 61 dysplastic nevi, 290 primary melanomas and 146 metastatic melanomas. The TMA was assessed for cytoplasmic and nuclear Skp2 expression by immunohistochemistry. The Kaplan-Meier method was used to evaluate the patient survival. The univariate and multivariate Cox regression models were performed to estimate the hazard ratios (HR) at five-year follow-up. RESULTS: Cytoplasmic but not nuclear Skp2 expression was gradually increased from normal nevi, dysplastic nevi, primary melanomas to metastatic melanomas. Cytoplasmic Skp2 expression correlated with AJCC stages (I vs II-IV, P<0.001), tumor thickness (≤2.00 vs >2.00 mm, P<0.001) and ulceration (P = 0.005). Increased cytoplasmic Skp2 expression was associated with a poor five-year disease-specific survival of patients with primary melanoma (P = 0.018) but not metastatic melanoma (P>0.05). CONCLUSION: This study demonstrates that cytoplasmic Skp2 plays an important role in melanoma pathogenesis and its expression correlates with patient survival. Our data indicate that cytoplasmic Skp2 may serve as a potential biomarker for melanoma progression and a therapeutic target for this disease

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore