159 research outputs found

    An Effective Privacy-Preserving Algorithm Based on Logistic Map and Rubik’s Cube Transformation

    Get PDF
    Security and privacy issues present a strong barrier for users to adapt to cloud storage systems. In this paper, a new algorithm for data splitting called EPPA is presented to strengthen the confidentiality of data by two-phase process. In EPPA, data object is organized to be several Rubik’s cubes executed for several rounds transformation at the first phase. In every round, chaotic logistic maps generate pseudorandom sequences to cover the plaintext by executing Exclusive-OR operation to form the cipher. Then logistic map is used to create rotation policies to scramble data information based on Rubik’s cube transformation. At the second phase, all cubes are unfolded and combined together as a cross-shaped cube, which will be partitioned into a few data fragments to guarantee that every fragment does not contain continuous bytes. These fragments are stored on randomly chosen servers within cloud environment. Analyses and experiments show that this approach is efficient and useable for the confidentiality of user data in cloud storage system

    Converse flexoelectric coefficient f(1212) in bulk Ba0.67Sr0.33TiO3

    Get PDF
    Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials

    Geometric morphometric analysis of Protoconites minor from the Cambrian (Terreneuvian) Yanjiahe Formation in Three Gorges, South China

    Get PDF
    The Ediacaran to Cambrian transition is a critical interval of time during which major evolutionary changes occurred. Recently, abundant Protoconites minor have been recovered from the silty shales of the lower Cambrian Yanjiahe Formation (Terreneuvian, Fortunian - Stage 2) in the Three Gorges area of South China. These fossils represent an important ecological diversification of macroscopic organisms at the onset of the Cambrian. Protoconites minor is a probable cnidarian-grade organism preserved by carbon compression. Herein, geometric morphometric analyses are applied to crack out specimens of P. minor to reveal any cryptic morphological details that may have implications for their morphological diversity, ontogenetic processes, and taxonomic identification. These statistical analyses reveal a strong relationship between size and shape, which indicates that the overall shape of P. minor was mainly controlled by allometric growth. The smaller specimens are generally wider at the anterior and more commonly have straight-sides. Larger individuals tend to be narrower at the anterior, with bending more common. Our analyses demonstrate that there are transitional forms between larger, strongly bent specimens and smaller, straight specimens, suggesting that the assemblage likely consists of a single species

    Clinical M2 Macrophage-Related Genes Can Serve as a Reliable Predictor of Lung Adenocarcinoma

    Get PDF
    BackgroundNumerous studies have found that infiltrating M2 macrophages play an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of M2 macrophage infiltration and M2 macrophage-related genes in immunotherapy and clinical outcomes remain obscure.MethodsSample information was extracted from TCGA and GEO databases. The TIME landscape was revealed using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was used to find M2 macrophage-related gene modules. Through univariate Cox regression, lasso regression analysis, and multivariate Cox regression, the genes strongly associated with the prognosis of LUAD were screened out. Risk score (RS) was calculated, and all samples were divided into high-risk group (HRG) and low-risk group (LRG) according to the median RS. External validation of RS was performed using GSE68571 data information. Prognostic nomogram based on risk signatures and other clinical information were constructed and validated with calibration curves. Potential associations of tumor mutational burden (TMB) and risk signatures were analyzed. Finally, the potential association of risk signatures with chemotherapy efficacy was investigated using the pRRophetic algorithm.ResultsBased on 504 samples extracted from TCGA database, 183 core genes were identified using WGCNA. Through a series of screening, two M2 macrophage-related genes (GRIA1 and CLEC3B) strongly correlated with LUAD prognosis were finally selected. RS was calculated, and prognostic risk nomogram including gender, age, T, N, M stage, clinical stage, and RS were constructed. The calibration curve shows that our constructed model has good performance. HRG patients were suitable for new ICI immunotherapy, while LRG was more suitable for CTLA4-immunosuppressive therapy alone. The half-maximal inhibitory concentrations (IC50) of the four chemotherapeutic drugs (metformin, cisplatin, paclitaxel, and gemcitabine) showed significant differences in HRG/LRG.ConclusionsIn conclusion, a comprehensive analysis of the role of M2 macrophages in tumor progression will help predict prognosis and facilitate the advancement of therapeutic techniques

    Tiny Sea Anemone from the Lower Cambrian of China

    Get PDF
    Background Abundant fossils from the Ediacaran and Cambrian showing cnidarian grade grossly suggest that cnidarian diversification occurred earlier than that of other eumetazoans. However, fossils of possible soft-bodied polyps are scanty and modern corals are dated back only to the Middle Triassic, although molecular phylogenetic results support the idea that anthozoans represent the first major branch of the Cnidaria. Because of difficulties in taxonomic assignments owing to imperfect preservation of fossil cnidarian candidates, little is known about forms ancestral to those of living groups. Methods and Findings We have analyzed the soft-bodied polypoid microfossils Eolympia pediculata gen. et sp. nov. from the lowest Cambrian Kuanchuanpu Formation in southern China by scanning electron microscopy and computer-aided microtomography after isolating fossils from sedimentary rocks by acetic acid maceration. The fossils, about a half mm in body size, are preserved with 18 mesenteries including directives bilaterally arranged, 18 tentacles and a stalk-like pedicle. The pedicle suggests a sexual life cycle, while asexual reproduction by transverse fission also is inferred by circumferential grooves on the body column. Conclusions The features found in the present fossils fall within the morphological spectrum of modern Hexacorallia excluding Ceriantharia, and thus Eolympia pediculata could be a stem member for this group. The fossils also demonstrate that basic features characterizing modern hexacorallians such as bilateral symmetry and the reproductive system have deep roots in the Early Cambrian.Funding was provided by the National Science Foundation of China (http://www.nsfc.gov.cn/) grants 40830208, 40602003, 50702005 to J. Han and D. G. Shu, and by MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University, China (http://sklcd.nwu.edu.cn/) to J. Han and D. G. Shu. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Long-Time Coherent Integration for Maneuvering Target Based on Second-Order Keystone Transform and Lv’s Distribution

    No full text
    Maneuvering target detection is a challenging task for radar due to its maneuverability and weak energy. Long-term coherent integration can remarkably increase signal energy to improve the target detection ability. Unfortunately, high velocity and acceleration of the target will produce linear range migration (LRM), quadratic range migration (QRM), and Doppler frequency migration (DFM), which seriously degrades the coherent integration gain and further deteriorates target detection performance. To solve this problem, a method based on second-order Keystone transform (SKT) and Lv’s distribution (LVD), also combined with Radon Fourier transform (RFT), i.e., SKTLVD, is proposed in this paper. The LRM is firstly corrected by using RFT. Then, the SKT is employed to remove QRM. Finally, LVD is utilized to eliminate the DFM and achieve coherent integration. Compared with several representative methods, the SKTLVD consumes low computation and obtains good target detection performance, striking a balance between computational cost and target detection ability. Numerical simulations and real measured radar data demonstrate that the proposed method can obtain considerable coherent integral gain under acceptable computational complexity

    A Context-Aware S-Health Service System for Drivers

    No full text
    As a stressful and sensitive task, driving can be disturbed by various factors from the health condition of the driver to the environmental variables of the vehicle. Continuous monitoring of driving hazards and providing the most appropriate business services to meet actual needs can guarantee safe driving and make great use of the existing information resources and business services. However, there is no in-depth research on the perception of a driver’s health status or the provision of customized business services in case of various hazardous situations. In order to constantly monitor the health status of the drivers and react to abnormal situations, this paper proposes a context-aware service system providing a configurable architecture for the design and implementation of the smart health service system for safe driving, which can perceive a driver’s health status and provide helpful services to the driver. With the context-aware technology to construct a smart health services system for safe driving, this is the first time that such a service system has been implemented in practice. Additionally, an assessment model is proposed to mitigate the impact of the acceptable abnormal status and, thus, reduce the unnecessary invocation of the services. With regard to different assessed situations, the business services can be invoked for the driver to adapt to hazardous situations according to the services configuration model, which can take full advantage of the existing information resources and business services. The evaluation results indicate that the alteration of the observed status in a valid time range T can be tolerated and the frequency of the service invocation can be reduced
    corecore