20 research outputs found
High-performance non-Fermi-liquid metallic thermoelectric materials
Searching for high-performance thermoelectric (TE) materials in the paradigm
of narrow-bandgap semiconductors has lasted for nearly 70 years and is
obviously hampered by a bottleneck of research now. Here we report on the
discovery of a few metallic compounds, TiFexCu2x-1Sb and TiFe1.33Sb, showing
the thermopower exceeding many TE semiconductors and the dimensionless figure
of merits comparable with the state-of-the-art TE materials. A quasi-linear
temperature (T) dependence of electrical resistivity in 2 K - 700 K and the
logarithmic T-dependent electronic specific heat at low temperature are also
observed to coexist with the high thermopower, highlighting the strong
intercoupling of the non-Fermi-liquid (NFL) quantum critical behavior of
electrons with TE transports. Electronic structure analysis reveals the
existence of fluctuating Fe-eg-related local magnetic moments, Fe-Fe
antiferromagnetic (AFM) interaction at the nearest 4c-4d sites, and two-fold
degenerate eg orbitals antiferromagnetically coupled with the dual-type
itinerant electrons close to the Fermi level, all of which infer to a
competition between the AFM ordering and Kondo-like spin compensation as well
as a parallel two-channel Kondo effect. These effects are both strongly
meditated by the structural disorder due to the random filling of Fe/Cu at the
equivalent 4c/4d sites of the Heusler crystal lattice. The magnetic
susceptibility deviates from ideal antiferromagnetism but can be fitted well by
x(T) = 1/({\theta} + BT{\alpha}), seemingly being consistent with the quantum
critical scenario of strong local correlation as discussed before. Our work not
only breaks the dilemma that the promising TE materials should be heavily-doped
semiconductors, but also demonstrates the correlation among high TE
performance, NFL quantum criticality, and magnetic fluctuation, which opens up
new directions for future research.Comment: 19 pages with 6 figure
Magnetic structure and Ising-like antiferromagnetism in the bilayer triangular lattice compound NdZnPO
The complex interplay of spin frustration and quantum fluctuations in
low-dimensional quantum materials leads to a variety of intriguing phenomena.
This research focuses on a detailed analysis of the magnetic behavior exhibited
by NdZnPO, a bilayer spin-1/2 triangular lattice antiferromagnet. The
investigation employs magnetization, specific heat, and powder neutron
scattering measurements. At zero field, a long-range magnetic order is observed
at . Powder neutron diffraction experiments show the
Ising-like magnetic moments along the -axis, revealing a stripe-like
magnetic structure with three equivalent magnetic propagation vectors.
Application of a magnetic field along the -axis suppresses the
antiferromagnetic order, leading to a fully polarized ferromagnetic state above
. This transition is accompanied by notable enhancements
in the nuclear Schottky contribution. Moreover, the absence of spin frustration
and expected field-induced plateau-like phases are remarkable observations.
Detailed calculations of magnetic dipolar interactions revealed complex
couplings reminiscent of a honeycomb lattice, suggesting the potential
emergence of Kitaev-like physics within this system. This comprehensive study
of the magnetic properties of NdZnPO highlights unresolved intricacies,
underscoring the imperative for further exploration to unveil the underlying
governing mechanisms.Comment: 11 pages, 6 figure
Gapless surface Dirac cone in antiferromagnetic topological insulator MnBiTe
The recent discovered antiferromagnetic topological insulators in Mn-Bi-Te
family with intrinsic magnetic ordering have rapidly drawn broad interest since
its cleaved surface state is believed to be gapped, hosting the unprecedented
axion states with half-integer quantum Hall effect. Here, however, we show
unambiguously by using high-resolution angle-resolved photoemission
spectroscopy that a gapless Dirac cone at the (0001) surface of MnBiTe
exists between the bulk band gap. Such unexpected surface state remains
unchanged across the bulk N\'eel temperature, and is even robust against severe
surface degradation, indicating additional topological protection. Through
symmetry analysis and - calculations we consider
different types of surface reconstruction of the magnetic moments as possible
origins giving rise to such linear dispersion. Our results reveal that the
intrinsic magnetic topological insulator hosts a rich platform to realize
various topological phases such as topological crystalline insulator and
time-reversal-preserved topological insulator, by tuning the magnetic
configurations.Comment: 9 pages, 4 figures. To appear in Phys. Rev. X. See Version 1 for the
supplementary fil
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Application of Alkyl Amidopropyl Betaine in Fire Fighting Foam Extinguishing Agent
In order to improve the fire extinguishing performance of foam fire extinguishing agents in nonpolar liquid fires, the application of alkyl amidopropyl betaine with different chain lengths in aqueous film-forming foam fire extinguishing agents was studied. The relationship between the structure of alkylamidopropyl betaine and surface tension, foaming property and foam stability was analyzed. On this basis, different foam fire extinguishing agent formulations were formed, and then the surface tension, foam performance and fire extinguishing performance of each formulation were tested. The results show that the alkyl chain of alkylamidopropyl betaine is directly proportional to the foaming property. The shorter the alkyl chain, the less oily the foam is and the better the foam’s anti-burning performance. The combination of alkylamidopropyl betaine with different chain lengths is conducive to comprehensive product foam performance and oleophobic performance to achieve the best fire extinguishing effect