41 research outputs found

    Assimilating Altimetric Data into a South China Sea Model

    Get PDF
    Sea surface heights from the TOPEX/Poseidon altimeter are assimilated into a three-dimensional primitive equation model to derive the circulation in the South China Sea. With data assimilation the model resolves not only the basinwide circulation but also a dipole off Vietnam and a low/high feature near the Luzon Strait. Mesoscale features are missing in the simulation without data assimilation because of poor resolution in the wind field and inadequate knowledge of the transport through the Luzon Strait. Compared to the case without data assimilation, data assimilation reduces the root mean square error between the simulated and observed sea surface heights by a factor of 2-3. Circulation derived from data assimilation under climatological conditions is contrasted with that during El Nino. In the normal winter of 1993-1994, flow at 50 m depth is strong and cyclonic. Flow at 900 m depth is cyclonic as well. The deep cyclone persists into the following summer. During the 1994-1995 Fl Nino winter, features in the flow field at 50 m depth either weaken or disappear, and circulation at 900 m depth is anticyclonic. In the summer of 1995 the dipole and the eastward jet off Vietnam at 50 m depth are missing, and the anticyclonic circulation at 900 m depth persists. Temperature at 65 m shows significant warming from fall 1994 to summer 1995. A weakened flow field and warming in the upper ocean are consistent with findings from earlier Fl Nino events

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Intra-Seasonal Variation in the Velocity Field of the Northeastern South China Sea

    No full text
    [[abstract]]Two subsurface Acoustic Doppler Current Profilers (ADCP) were deployed at the northeastern South China Sea to study circulation structure in the area as well as the path and process of Kuroshio intrusion. The 48-hour low-pass filtered data reveal significant intra-seasonal variations in the velocity field. The current pattern alternates between clockwise and counterclockwise even within a single month. Local wind forcing dominated by monsoon winds fails to address the phenomena and variations. The present study suggests that wind stress curl forcing is the dominant process controlling the circulation picture in the area. While a stronger wind stress curl appeared and developed off southern tip of Taiwan, it will provide negative vorticity to the intruded current and form an anticyclonic eddy. The stronger current is always going along with the stronger wind stress curl. On the other hand, while the curl in the area looses or decays, the intruded current becomes weakened and forms a cyclonic eddy. The agreement between wind stress curl and the velocity field suggests that changes in the wind stress curl contribute to the intra-seasonal variations in the northeastern South China Sea.

    Air-Sea Interaction between Typhoon Nari and Kuroshio

    No full text
    [[abstract]]The air-sea interaction between Tropical Cyclone Nari and Kuroshio was studied using satellite observations and a three-dimensional primitive equation ocean model. With energy and heat supplement from the Kuroshio, Nari was circling around a restricted water and sustained over an extraordinarily long period. The features that Nari strengthened as it passed over the warm Kuroshio, weakening as it met a cold dome were well revealed by TMI/SST. At certain locations along typhoon track, surface cooling of up to 5 degree C was observed after Nari's departure. Model simulation indicated significant positive vorticities and cyclonic current vectors did not occur throughout the trail of Nari. Only regions north of Kuroshio provided a better condition for developing a cyclonic eddy. As a result, the cold SST patch was only visible to the north of the Kuroshio axis. The cyclonic circulation penetrated much deeper for a slowly-moving storm, regardless of the typhoon intensity. Near-inertial frequency oscillations after typhoon departure were simulated by the model in terms of the vertical displacement of isotherms. The SST cooling caused by upwelling and vertical mixing is effective in cooling the upper ocean several days after the storm had passed. At certain locations, surface chlorophyll-a concentration increased significantly after Nari's departure. The combined action of upwelling and mixing in turn brings cold deep-layer, nutrient-rich water to the sea surface, which ignificantly increases the surface chlorophyll-a concentration.

    Distinct impacts of the 1997–98 and 2015–16 extreme El Niños on Japanese eel larval catch

    No full text
    Abstract Extraordinarily poor recruitment of Japanese eels in East Asia has been generally reported during extreme El Niño years. However, the scenario failed to take place during the 2015–16 extreme event. In this study, we examined possible factors responsible for differing eel abundance in East Asia during the two strongest recent extreme El Niños, which occurred in 1997–98 and 2015–16. Numerical tracer experiments were carried out to determine why the impacts on eel catches seen in 1997–98 were not repeated in 2015–16. Among physical factors, two scenarios are likely responsible for extremely poor recruitment in East Asia: southward migration of the North Equatorial Current (NEC) or southward movement of eel spawning grounds. Comparing the latitudinal shift of NEC locations between the 1997–98 and 2015–16 El Niños, we conclude that NEC migration may be a factor, but is not chiefly responsible, for lower eel catches. Our findings pointed to southward movement of spawning grounds as the dominant factor. The northward movement of spawning grounds during 2015–16 meant that eel larvae were preferentially transported into the NEC-Kuroshio system, which resulted in a higher rate of recruitment success. The distinct evolution and dynamics of these two El Niño events led to different spawning ground locations, impacting eel abundance in East Asian countries

    Enhanced Warming and Intensification of the Kuroshio Extension, 1999–2013

    No full text
    The Pacific climate regime has anomalous warm and cool periods every decade associated with atmospheric circulation changes, which are known to have modulated the tropical and subtropical Pacific during the recent Pacific hiatus regime (1999–2013). However, the influence of the hiatus regime on the Kuroshio Extension (KE) remains unclear. Here, we show that the KE jet underwent enhanced warming (increased 1–1.5 °C), intensification (8–19%) and northward migration (0.5–1°). The KE jet became more perturbed in the upstream region (increased by 70%, west of 146°E) but became stable downstream (perturbation decreased 5–11%, east of 146°E). A poleward shift of the mid-latitude jet stream and weakened Aleutian Low (AL) contributed to the northward migration and intensification of the KE jet, respectively. The weakened AL was associated with negative wind stress curl (WSC) in the eastern Pacific, and this WSC generated an underlying positive sea surface height anomaly that propagated westward, intensifying the KE jet when it reached the KE region. Since the recent Pacific hiatus regime ended after 2013, these changes of the KE jet may reverse during the ongoing warming regime
    corecore