59 research outputs found

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    Simultaneous alignment and folding of protein sequences

    Get PDF
    Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We presentpartiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm’s complexity is polynomial in time and space. Algorithmically,partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments,partiFold-Align significantly outperforms state-of-the-art pairwise sequence alignment tools in the most difficult low sequence homology case and improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families. partiFold-Align is available at http://partiFold.csail.mit.edu

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization.

    Get PDF
    Abstract: Increased forest productivity has been obtained by improving resource availability through water and nutrient amendments. However, more stress-tolerant species that have robust site requirements do not respond consistently to irrigation. An important factor contributing to robust site requirements may be the distribution of biomass belowground, yet available information is limited. We examined the accumulation and distribution of above- and below-ground biomass in sweetgum (Liqrridambar sfyrac$lua L.) and loblolly pine (Pinus taeda L.) stands receiving irrigation and fertilization. Mean annual aboveground production after 4 years ranged from 2.4 to 5.1 ~g.ha-'.year' for sweetgum and from 5.0 to 6.9 ~g.ha-l.year-l for pine. Sweetgum responded positively to irrigation and fertilization with an additive response to irrigation + fertilization. Pine only responded to fertilization. Sweetgum root mass fraction (RME)in creased with fertilization at 2 years and decreased with fertilization at 4 years. There were no detectable treatment differences in loblolly pine RMF. Development explained from 67% to 98% of variation in shoot versus root allometry for ephemeral and perennial tissues, fertilization explained no more than 5% of the variation in for either species, and irrigation did not explain any. We conclude that shifts in allocation from roots to shoots do not explain nutrient-induced growth stimulations

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    Measurements of fiducial and differential cross sections of Higgs boson production in the H→ZZ∗ → 4ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb−¹ of pp collision data, produced at √s = 8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
    corecore