1,907 research outputs found

    Edaphic controls of soil organic carbon in tropical agricultural landscapes

    Get PDF
    Predicting soil organic carbon (SOC) is problematic in tropical soils because mechanisms of SOC (de)stabilization are not resolved. We aimed to identify such storage mechanisms in a tropical soil landscape constrained by 100 years of similar soil inputs and agricultural disturbance under the production of sugarcane, a C-4 grass and bioenergy feedstock. We measured soil physicochemical parameters, SOC concentration, and SOC dynamics by soil horizon to one meter to identify soil parameters that can predict SOC outcomes. Applying correlative analyses, linear mixed model (LMM) regression, model selection by AICc, and hierarchical clustering we found that slow moving SOC was related to many soil parameters, while the fastest moving SOC was only related to soil surface charge. Our models explained 78-79%, 51-57%, 7-8% of variance in SOC concentration, slow pool decay, and fast pool decay, respectively. Top SOC predictors were roots, the ratio of organo-complexed iron (Fe) to aluminum (Al), water stable aggregates (WSagg), and cation exchange capacity (CEC). Using hierarchical clustering we also assessed SOC predictors across gradients of depth and rainfall with strong reductions in Roots, SOC, and slow pool decay associated with increasing depth, while increased rainfall was associated with increased Clay and WSagg and reduced CEC in surface soils. Increased negative surface charge, water stable aggregation, organo-Fe complexation, and root inputs were key SOC protection mechanisms despite high soil disturbance. Further development of these relationships is expected to improve understanding of SOC storage mechanisms and outcomes in similar tropical agricultural soils globally

    Maximizing Soil Carbon Sequestration: Assessing Procedural Barriers to Carbon Management in Cultivated Tropical Perennial Grass Systems

    Get PDF
    The natural capacity of the terrestrial landscape to capture and store carbon from the atmosphere can be used in cultivated systems to maximize the climate change mitigation potential of agricultural regions. A combination of inherent soil carbon storage potential, conservation management, and rhizosphere inputs should be considered when making landscape‐level decisions about agriculture if climate change mitigation is an important goal. However, the ability to accurately predict soil organic carbon accumulation following management change in the tropics is currently limited by the commonly available tools developed in more temperate systems, a gap that must be addressed locally in order to facilitate these types of landscape‐level decisions. Here, we use a case study in Hawaii to demonstrate multiple approaches to measuring and simulating soil carbon changes after the implementation of zero‐tillage cultivation of perennial grasses following more than a century of intensive sugarcane cultivation. We identify advancements needed to overcome the barriers to potential monitoring and projection protocols for soil carbon storage at our site and other similar sites

    Eff ect of antenatal multiple micronutrient supplementation on anthropometry and blood pressure in mid-childhood in Nepal: follow-up of a double-blind randomised controlled trial

    Get PDF
    Background In 2002–04, we did a randomised controlled trial in southern Nepal, and reported that children born to mothers taking multiple micronutrient supplements during pregnancy had a mean birthweight 77 g greater than children born to mothers taking iron and folic acid supplements. Children born to mothers in the study group were a mean 204 g heavier at 2·5 years of age and their systolic blood pressure was a mean 2·5 mm Hg lower than children born to mothers in the control group. We aimed to follow up the same children to mid-childhood (age 8·5 years) to investigate whether these diff erences would be sustained. Methods For this follow-up study, we identifi ed children from the original trial and measured anthropometry, body composition with bioelectrical impedance (with population-specifi c isotope calibration), blood pressure, and renal dimensions by ultrasound. We documented socioeconomic status, household food security, and air pollution. Main outcomes of the follow-up at 8 years were Z scores for weight-for-age, height-for-age, and body-mass index (BMI)-forage according to WHO Child Growth Standards for children aged 5–19 years, and blood pressure. This study is registered with the International Standard Randomised Controlled Trial register, number ISRCTN88625934. Findings Between Sept 21, 2011, and Dec 7, 2012, we assessed 841 children (422 in the control group and 419 in the intervention group). Unadjusted diff erences (intervention minus control) in Z scores were 0·05 for weight-for-age (95% CI –0·09 to 0·19), 0·02 in height-for-age (–0·10 to 0·15), and 0·04 in BMI-for-age (–0·09 to 0·18). We recorded no diff erence in blood pressure. Adjusted diff erences were similar for all outcomes. Interpretation We recorded no diff erences in phenotype between children born to mothers who received antenatal multiple micronutrient or iron and folate supplements at age 8·5 years. Our fi ndings did not extend to physiological diff erences or potential longer-term eff ects

    A Multidisciplinary Approach to Investigate Deep-Pelagic Ecosystem Dynamics in the Gulf of Mexico Following Deepwater Horizon

    Get PDF
    The pelagic Gulf of Mexico (GoM) is a complex system of dynamic physical oceanography (western boundary current, mesoscale eddies), high biological diversity, and community integration via diel vertical migration and lateral advection. Humans also heavily utilize this system, including its deep-sea components, for resource extraction, shipping, tourism, and other commercial activity. This utilization has had impacts, some with disastrous consequences. The Deepwater Horizon oil spill (DWHOS) occurred at a depth of ∼1500 m (Macondo wellhead), creating a persistent and toxic mixture of hydrocarbons and dispersant in the deep-pelagic (water column below 200 m depth) habitat. In order to assess the impacts of the DWHOS on this habitat, two large-scale research programs, described herein, were designed and executed. These programs, ONSAP and DEEPEND, aimed to quantitatively characterize the oceanic ecosystem of the northern GoM and to establish a time-series with which natural and anthropogenic changes could be detected. The approach was multi-disciplinary in nature and included in situ sampling, acoustic sensing, water column profiling and sampling, satellite remote sensing, AUV sensing, numerical modeling, genetic sequencing, and biogeochemical analyses. The synergy of these methodologies has provided new and unprecedented perspectives of an oceanic ecosystem with respect to composition, connectivity, drivers, and variability

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Experimental evidence that novel land management interventions inspired by history enhance biodiversity

    Get PDF
    1. To address biodiversity declines within semi-natural habitats, land-management must cater for diverse taxonomic groups. Integrating our understanding of the ecological requirements of priority (rare, scarce or threatened) species through ‘biodiversity auditing’, with that of the intensity and complexity of historical land-use, encourages novel forms of management. Experimental confirmation is needed to establish whether this enhances biodiversity conservation relative to routine management. 2. Biodiversity auditing and historical land-use of dry-open terrestrial habitats in Breckland (Eastern England) both encourage management incorporating ground-disturbance and spatio-temporal variability. To test biodiversity conservation outcomes, we developed 40 4-ha management complexes over three successive winters, of which 20 were shallow-cultivated (rotovation) and 20 deep-cultivated (ploughing), stratified across 3,850-ha of closed-sward dry grassland and lowland heathland (collectively ‘dry grassland’). Complexes comprised four 1-ha sub-treatments: repeat-cultivation, first-time-cultivation, one-year-old fallow and two-year-old fallow. We examined responses of vascular plants; spiders; true bugs; ground, rove and ‘other’ beetles; bees and wasps; ants; and true flies on treatment complexes and 21 4-ha untreated controls. Sampling gave 132,251 invertebrates from 877 species and 28,846 plant observations from 167 species. 3. Resampling and rarefaction analyses showed shallow- and deep-cultivation both doubled priority species richness (pooling sub-treatments within complexes) compared to controls. Priority spider, ground beetle, other beetle, and true bug richness were greater on both treatments than controls. Responses were strongest for those priority dry-open-habitat associated invertebrates initially predicted (by biodiversity auditing) to benefit from heavy physical-disturbance. 4. Assemblage composition (pooling non-priority and priority species) varied between sub-treatments for plants, ants, true bugs, spiders, ground, rove and other beetles; but only one-year-old fallowed deep-cultivation increased priority richness across multiple taxa. 5. Treatments produced similar biodiversity responses across various dry grassland ‘habitats’ that differed in plant composition, allowing simplified management guidance. 6. Synthesis and applications. Our landscape-scale experiment confirmed the considerable biodiversity value of interventions inspired by history and informed by systematic multi-taxa analysis of ecological requirements across priority biota. Since assemblage composition varied between sub-treatments, providing heterogeneity in management will support the widest suite of species. Crucially, the intended recipients responded most strongly, suggesting biodiversity audits could successfully inform interventions within other systems

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore