33 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Statistical Analysis of Plating Variable Effects on the Electrical Conductivity of Electroless Copper Patterns on Paper

    No full text
    We describe a process for selective metallization of paper substrates bearing inkjet printed patterns of a commercial Pd/Sn colloidal catalyst ink plated using a commercial electroless Cu bath. The electrical conductivity of the Cu films is analyzed as a function of feature geometry (line dimensions (<i>L</i>) and spacing (<i>S</i>)), type of paper (<i>P</i>), age of the Pd/Sn patterns (<i>A</i>), plating time (<i>T</i>), and plating temperature (<i>H</i>) using a two-level factorial design. Conductivity is influenced predominantly by the <i>P</i>, <i>T</i>, and <i>H</i> factors, with lesser contributions attributed to pair-wise interactions among several of the variables studied. Increases in <i>T</i> and/or <i>H</i> enhance conductivity of the Cu films, whereas increases in <i>P</i>, corresponding to the use of rougher, more porous, paper substrates, yield Cu films exhibiting decreased conductivity. Our analysis leads to a model that predicts Cu film conductivity well over the ranges of variables examined, provides guidelines for identification of optimum conditions for plating highly conductive Cu films, and identifies areas for further process improvement

    Paper-Based Electrochemical Detection of Chlorate

    No full text
    We describe the use of a paper-based probe impregnated with a vanadium-containing polyoxometalate anion, [PMo11VO40]5−, on screen-printed carbon electrodes for the electrochemical determination of chlorate. Cyclic voltammetry (CV) and chronocoulometry were used to characterize the ClO3− response in a pH = 2.5 solution of 100 mM sodium acetate. A linear CV current response was observed between 0.156 and 1.25 mg/mL with a detection limit of 0.083 mg/mL (S/N &gt; 3). This performance was reproducible using [PMo11VO40]5−-impregnated filter paper stored under ambient conditions for as long as 8 months prior to use. At high concentration of chlorate, an additional catalytic cathodic peak was seen in the reverse scan of the CVs, which was digitally simulated using a simple model. For chronocoulometry, the charge measured after 5 min gave a linear response from 0.625 to 2.5 mg/mL with a detection limit of 0.31 mg/mL (S/N &gt; 3). In addition, the slope of charge vs. time also gave a linear response. In this case the linear range was from 0.312 to 2.5 mg/mL with a detection limit of 0.15 mg/mL (S/N &gt; 3). Simple assays were conducted using three types of soil, and recovery measurements reported
    corecore