139 research outputs found

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, Ύ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurements of fiducial cross-sections for t\bart production with one or two additional b-jets in pp collisions at √s =8 TeVusing the ATLAS detector

    Get PDF
    Fiducial cross-sections for ttˉt\bar{t} production with one or two additional bb-jets are reported, using an integrated luminosity of 20.3 fb−1^{-1} of proton--proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for ttˉt\bar{t} events with at least one additional bb-jet is measured to be 950 ±\pm 70 (stat.) −190+240^{+240}_{-190} (syst.) fb in the lepton-plus-jets channel and 50 ±\pm 10 (stat.) −10+15^{+15}_{-10} (syst.) fb in the eÎŒe \mu channel. The cross-section times branching ratio for events with at least two additional bb-jets is measured to be 19.3 ±\pm 3.5 (stat.) ±\pm 5.7 (syst.) fb in the dilepton channel (eÎŒe \mu,\,ΌΌ\mu\mu, and \,eeee) using a method based on tight selection criteria, and 13.5 ±\pm 3.3 (stat.) ±\pm 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 ±\pm 0.33 (stat.) ±\pm 0.28 (syst.)\% for the ratio of ttˉt\bar{t} production with two additional bb-jets to ttˉt\bar{t} production with any two additional jets. All measurements are in good agreement with recent theory predictions.Comment: 41 pages plus author list + cover page (58 total), 9 Figures, 16 tables, submitted to EPJC, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2014-10

    Search for Wâ€Č→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive Wâ€Č gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass Wâ€Č bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the Wâ€Č→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed Wâ€Č bosons, and ranging from 0.10pb to 0.21pb for Wâ€Č bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the Wâ€Č-boson coupling to tb as a function of the Wâ€Č mass using an effective field theory approach, which is independent of details of particular models predicting a Wâ€Čboson

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (ttÂŻ) charge asymmetry AttÂŻC and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive ttÂŻ charge asymmetry is measured to be AttÂŻC = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the ttÂŻ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton–proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb−1 of collisions at a centre-of-mass energy of s√=8 TeV, although in some case an additional 4.7 fb−1 of collision data at s√=7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.An erratum to this article can be found at http://dx.doi.org/10.1140/epjc/s10052-016-3935-

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Precise measurements of W- and Z-boson transverse momentum spectra with the ATLAS detector using pp collisions at t √s = 5.02 TeV and 13 TeV

    Get PDF
    • 

    corecore