43 research outputs found

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters

    Effect of planting techniques and weed control treatments on growth and yield of wheat

    Get PDF
    A field experiment was conducted to study the effect of different planting techniques (conventional drill sowing at 16, 18 and 20 cm row spacing and bed planting with two and three rows in main plots) and weed control treatments (pinoxaden 50 g/ha, ready-mix (RM) of carfentrazone and metsulfuron 25 g/ha and pinoxaden 50 g/ha + RM of carfentrazone and metsulfuron 25 g/ha in subplots) on growth and productivity of wheat. The grain yield under row spacing 18 cm (53.30 q/ha), and 20 cm (52.02 q/ha), and three rows bed planting (51.96 q/ha) were recorded statistically at par with each other and significantly higher than 16 cm (49.37 q/ha) row spacing and two row bed planting (48.53 q/ha). Gross returns (Rs. 95637/ha) and net returns (Rs. 43929/ha) and B:C ratio (1.85) were record-ed higher under 18 cm row spacing compared to other planting techniques. Tank mixed application of pinoxaden 50 g/ha + RM of carfentrazone and metsulfuron 25 g/ha applied at 35 days after sowing (DAS) controlled both grassy and broad leaved weeds effectively with lower values of weed dry matter accumulation (7.67 g/ha) and produced growth parameters, yield attributes and yield (53.16 q/ha) at par with weed free treatment. In light of the results to maximise productivity, 18 cm row spacing may be practiced and tank mix application of pinoxaden (50 g/ha) + RM of carfentrazone and metsulfuron (25 g/ha) is recommended to reduce losses due to complex weed flora in wheat

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Algorithmic Results in Simple Stochastic Games

    No full text
    We obtain the first nontrivial worst-case upper bound on the number of iterations required by the well-known Hoffman-Karp algorithm for the simple stochastic game problem. We also describe a randomized variant of the Hoffman-Karp algorithm and analyze the expected number of iterations required by it in the worst case

    Hardness of Set Cover with Intersection 1

    No full text
    We consider a restricted version of the general Set Covering problem in which each set in the given set system intersects with any other set in at most 1 element. We show that the Set Covering problem with intersection 1 cannot be approximated within a o(log n) factor in random polynomial time unless NP ` ZT IME(n ). We also observe that the main challenge in derandomizing this reduction lies in find a hitting set for large volume combinatorial rectangles satisfying certain intersection properties. These properties are not satisfied by current methods of hitting set construction. An exampl

    A Non−Ground Realization of the Stable and Well−Founded Semantics

    No full text
    AbstractThe declarative semantics of nonmonotonic logic programming has largely been based on propositional programs. However, the ground instantiation of a logic program may be very large, and likewise, a ground stable model may also be very large. We develop a non-ground semantic theory for non-monotonic logic programming. Its principal advantage is that stable models and well-founded models can be represented as sets of atoms, rather than as sets of ground atoms. A set SI of atoms may be viewed as a compact representation of the Herbrand interpretation consisting of all ground instances of atoms in SI. We develop generalizations of the stable and well-founded semantics based on such non-ground interpretations SI. The key notions for our theory are those of covers and anticovers. A cover as well as its anticover are sets of substitutions — non-ground in general — representing all substitutions obtained by ground instantiating some substitution in the (anti)cover, with the additional requirement that each ground substitution is represented either by the cover or by the anticover, but not by both. We develop methods for computing anticovers for a given cover, show that membership in so-called optimal covers is decidable, and investigate the complexity in the Datalog case

    A Non−Ground Realization of the Stable and Well−Founded Semantics

    No full text
    AbstractThe declarative semantics of nonmonotonic logic programming has largely been based on propositional programs. However, the ground instantiation of a logic program may be very large, and likewise, a ground stable model may also be very large. We develop a non-ground semantic theory for non-monotonic logic programming. Its principal advantage is that stable models and well-founded models can be represented as sets of atoms, rather than as sets of ground atoms. A set SI of atoms may be viewed as a compact representation of the Herbrand interpretation consisting of all ground instances of atoms in SI. We develop generalizations of the stable and well-founded semantics based on such non-ground interpretations SI. The key notions for our theory are those of covers and anticovers. A cover as well as its anticover are sets of substitutions — non-ground in general — representing all substitutions obtained by ground instantiating some substitution in the (anti)cover, with the additional requirement that each ground substitution is represented either by the cover or by the anticover, but not by both. We develop methods for computing anticovers for a given cover, show that membership in so-called optimal covers is decidable, and investigate the complexity in the Datalog case
    corecore