60 research outputs found

    Ebola virus disease preparedness in countries bordering Democratic Republic of Congo: Lessons from west African outbreak

    Get PDF
    Background: Ebola virus disease ravaged three West African countries in the wake of 2014 which was seen as the deadliest Ebola Virus Disease (EVD) outbreak in history. Several lessons were taken out of the West African outbreak one of which is the lack of preparedness by countries in the region.Materials and Methods: This paper looked at the mistakes of the West African outbreak and reports how such mistakes were corrected in the current outbreak going on in the Democratic Republic of Congo (DRC). Preparedness efforts are currently taking place in countries bordering DRC which included quick detection and response to an eventual EVD event.Results: This paid off on several occasions when cases from DRC to Uganda were quickly detected and response was as quick as possible. Preparedness carried out in Countries bordering DRC included setting up of Rapid Response Team (RRT) and training of these teams both at country and regional level. All members of the RRT were trained in all areas of readiness which included community engagement, laboratory, logistics, surveillance, case management, sample collection, packaging and shipment as well as Infection Prevention and Control (IPC).Conclusion: These trainings have led to readiness to an eventual EVD event. Countries now have the ability to respond quickly with better Emergency Operation Centre (EOC) for EVD. Keywords: Ebola, EVD, Preparedness, Response, Infection Prevention and Control

    Age-period-cohort analysis of trends in amyotrophic lateral sclerosis incidence

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease with an unknown cause. Studies have reported that the incidence rate of ALS might be changing. As ALS is an age related disease, crude incidence could increase as population structure changes and overall life expectancy improves. Age-period-cohort (APC) models are frequently used to investigate trends in demographic rates such as incidence. Age-specific incidence rate for ALS from 1996 to 2014 were taken from a population-based ALS register in Ireland. To circumvent the well-known identifiability issue in APC models, we apply the method of Partial Least Squares Regression to separate the effects of Age, Period and Cohort on ALS incidence over time. This APC analysis shows no cohort effect and the initial signs of a period effect; increasing incidence of ALS in the most recently diagnosed group. As further years of data accrue to the Irish register it will become clear if this effect emerges as a strong trend in the incidence of ALS in Ireland and replication of these analyses in other populations will show if our findings on temporal patterns in ALS incidence are shared elsewhere

    Imaging the water snow-line during a protostellar outburst

    Get PDF
    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains^1, 2, 3, 4, 5, 6. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra^7, 8, 9 and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars^11). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation5, and the formation of comets, ice giants and the cores of gas giants^12. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate^13. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions^14: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation^15, 16, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation

    Discovery of novel heart rate-associated loci using the Exome Chip

    Get PDF
    Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses. Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods. We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants. Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies

    Measurement of J/ψ production in pp collisions at s√=2.76TeV

    Get PDF
    The production of J/ψ mesons is studied with the LHCb detector using data from pp collisions at s√=2.76 TeV corresponding to an integrated luminosity of 71 nb−1. The differential cross-section for inclusive J/ψ production is measured as a function of its transverse momentum p T. The cross-section in the fiducial region 0 < p T  < 12 GeV/c and rapidity 2.0 < y <4.5 is measured to be 5.6 ± 0.1 (stat) ± 0.4 (syst) μb, with the assumption of unpolarised J/ψ production. The fraction of J/ψ production from b-hadron decays is measured to be (7.1 ± 0.6 (stat) ± 0.7 (syst))%

    Study of production and cold nuclear matter effects in pPb collisions at=5 TeV

    Get PDF
    Production of mesons in proton-lead collisions at a nucleon-nucleon centre-of-mass energy = 5 TeV is studied with the LHCb detector. The analysis is based on a data sample corresponding to an integrated luminosity of 1.6 nb(-1). The mesons of transverse momenta up to 15 GeV/c are reconstructed in the dimuon decay mode. The rapidity coverage in the centre-of-mass system is 1.5 < y < 4.0 (forward region) and -5.0 < y < -2.5 (backward region). The forward-backward production ratio and the nuclear modification factor for (1S) mesons are determined. The data are compatible with the predictions for a suppression of (1S) production with respect to proton-proton collisions in the forward region, and an enhancement in the backward region. The suppression is found to be smaller than in the case of prompt J/psi mesons

    Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension

    Get PDF
    High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore