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1 Introduction

This article presents the measurements of the differential inclusive J/ψ production cross-

section as a function of the J/ψ transverse momentum, and of the fraction of J/ψ mesons

coming from the decay of a b-hadron in pp collisions at a centre-of-mass energy of 2.76 TeV.

The study is based on a sample corresponding to an integrated luminosity of 71 nb−1 col-

lected in March 2011 with an average of one visible pp interaction per recorded event. The

main goal of this short run was to provide a reference for the study of Pb-Pb interactions

carried out at the same centre-of-mass energy per nucleon-nucleon collision.

Studies of J/ψ production have been performed by the LHC experiments using data

taken at
√
s = 7 TeV [1–4] as well as at lower energies [5]. The data at

√
s = 2.76 TeV pro-

vide an extra measurement to test theoretical models of J/ψ production in hadron collisions

and are also used to obtain a measurement of J/ψ production from b-hadron decays.

The LHCb detector [6] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detec-

tor includes a high precision tracking system consisting of a silicon-strip vertex detector

(VELO) surrounding the pp interaction region, a large-area silicon-strip detector located

upstream of a dipole magnet with a bending power of about 4 Tm, and three stations

of silicon-strip detectors and straw drift tubes placed downstream. Charged hadrons are

identified using two ring-imaging Cherenkov detectors. Photon, electron and hadron can-

didates are identified by a calorimeter system consisting of scintillating-pad and preshower

detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identi-

fied by a system which consists of five stations of alternating layers of iron and multiwire
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proportional chambers, with the exception of the centre of the first station, which uses

triple-GEM detectors.

For the data used in this analysis, the VELO, which consists of two retractable halves

surrounding the interaction region, was positioned during collisions with its sensitive area

at a minimum distance of 13 mm from the beam instead of the nominal 8 mm. This

was necessary to provide a larger aperture for the beam at the lower centre-of-mass en-

ergy of 2.76 TeV.

The trigger [7] consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction.

Only the triggers used in this analysis are described here. At the hardware trigger level,

a single muon candidate with pT larger than 0.8 GeV/c is required. In the first stage of

the software trigger a simplified event reconstruction is applied and one requires a µ+µ−

candidate with invariant mass greater than 2.7 GeV/c2. In the second stage a full event

reconstruction is performed and only events with a µ+µ− pair with invariant mass within

120 MeV/c2 of the known J/ψ mass [8] are retained.

2 Event selection

The analysis strategy is based upon that described in ref. [1]. Candidate J/ψ mesons are

formed from pairs of opposite-sign charged particles reconstructed in the fiducial region

2 < η < 5 by the full tracking system using algorithms adapted to the VELO at its displaced

position. Each particle must have pT above 0.7 GeV/c and be identified as a muon. The

two muons are required to originate from a common vertex, and only candidates with a

χ2 probability of the vertex fit larger than 0.5% are kept. Events are selected in which at

least one primary vertex is reconstructed from at least three VELO tracks, excluding the

two signal muon tracks from the J/ψ decay. A VELO track is required to have at least

three hits on a straight line in the radial strips of the detector.

The Monte Carlo samples used for this analysis are based on the Pythia 6.4 genera-

tor [9] configured with the parameters detailed in ref. [10]. The EvtGen package [11] is

used to generate hadron decays, in particular for J/ψ and b-hadrons. The interaction of the

generated particles with the detector and its response are implemented using the Geant4

toolkit [12, 13] as described in ref. [14]. Radiative corrections to the decay J/ψ → µ+µ−

are generated using the Photos package [15]. The simulated position of the VELO corre-

sponds to that in the data.

3 Cross-section determination

The differential cross-section for J/ψ production in a pT bin is given by

dσ

dpT
=

N (J/ψ → µ+µ−)

L × εtot × B (J/ψ → µ+µ−)×∆pT
, (3.1)

where N (J/ψ → µ+µ−) is the number of observed J/ψ → µ+µ− signal decays in the given

bin, εtot the J/ψ detection efficiency per pT bin (including both acceptance and trigger),
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Figure 1. Dimuon mass distributions, with fit results superimposed, in bins of pT. Results for

pT > 7 GeV/c are merged in the last bin.

L the integrated luminosity, B (J/ψ → µ+µ−) = (5.93 ± 0.06) × 10−2 [8] the branching

fraction of the J/ψ → µ+µ− decay, and ∆pT the pT bin size.

The number of signal J/ψ mesons per pT bin is determined from an extended unbinned

maximum likelihood fit to the invariant mass distribution of the reconstructed J/ψ candi-

dates in the interval 3.0 < Mµµ < 3.2 GeV/c2, where the signal is described by a Crystal

Ball function [16] and the combinatorial background by an exponential distribution. Fig-

ure 1 shows the J/ψ invariant mass distribution together with the fit results for each pT
bin, where results for 7 < pT < 12 GeV/c are merged in the last bin.

There are two main sources that contribute to the inclusive J/ψ sample. Those pro-

duced at the pp collision point, either directly or from the decay of a directly produced

higher mass charmonium state, are called prompt J/ψ . The second source, J/ψ from b,

are those produced in the decay of a b-hadron. Their production is displaced from the pp

collision point because of the relatively large b lifetime. The two sources are statistically

separated using the measured J/ψ pseudo-decaytime, defined as

tz =
(zJ/ψ − zPV)×MJ/ψ

pz
, (3.2)

where zJ/ψ and zPV are the positions along the beam axis of the J/ψ decay vertex and of

the primary vertex refitted after removing the two muon tracks from the J/ψ candidate; pz
is the measured J/ψ momentum in the beam direction and MJ/ψ the known J/ψ mass [8].

Given that b-hadrons are not fully reconstructed, the J/ψ momentum is used instead of

the exact b-hadron momentum and the tz variable provides a good estimate of the b-

hadron decaytime.

The fraction of J/ψ from b is determined from a simultaneous fit to the total pseudo-

decaytime tz and µ+µ− invariant mass. Due to the small number of J/ψ candidates, the

fraction of J/ψ from b is computed over the full pT interval from 0 to 12 GeV/c. The

signal decaytime distribution is described by a delta function at tz = 0 for the prompt J/ψ
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Figure 2. Distributions of the data with projections of the fit superimposed for (left) the dimuon

invariant mass and (right) tz. The thick blue line is the total fit function and the hatched area the

background component.

component and an exponential decay function for the J/ψ from b component. The function

describing the tz distribution of the signal is therefore

fsignal(tz; fp, fb, τb) = fp δ(tz) + θ(tz)fb
e
− tz
τb

τb
, (3.3)

where θ(tz) is the step function, fp and fb are the fractions of prompt J/ψ and J/ψ from b

in the sample, and τb the b-hadron pseudo-lifetime. In the fit, τb is fixed to the value of

1.52 ps, as obtained from simulation. The prompt and b components of the signal function

are convolved with a triple-Gaussian resolution function

fres(tz;µ, σ1, σ2, σ3, β, β
′) =

β√
2πσ1

e
− (tz−µ)2

2σ21 +
β′√
2πσ2

e
− (tz−µ)2

2σ22 +
1− β − β′√

2πσ3
e
− (tz−µ)2

2σ23 .

(3.4)

The parameter µ is the bias of the tz measurement, and β and β′ the fractions of the

first two Gaussian functions. The background consists of random combinations of muons

from semi-leptonic b and c decays, which tend to produce positive tz values, as well as of

mis-reconstructed tracks from decays in flight of kaons and pions, which contribute both to

positive and negative tz values. The background tz distribution is parameterised with an

empirical function based on the shape obtained from the J/ψ mass sidebands. It is taken

as the sum of a delta function and three exponential components, two for positive tz and

one for negative tz. The exponential parameter, τL, is common to the larger positive and

negative lifetime exponential components. The explicit form is

fbckg(tz) = (1− f1 − fL) δ(tz) + θ(tz)f1
e
− tz
τ1

τ1
+ fL

e
− |tz |
τL

2τL
, (3.5)

and is convolved with the same resolution function fres as the signal.

The function used to describe the tz distribution is therefore

f(tz; fp, fb, µ, σ1, σ2, σ3, β, β
′, τb) =

(
fp δ(tz) + fb

e
− tz
τb

τb
+ (1− fp − fb) fbckg(tz)

)
⊗ fres(tz;µ, σ1, σ2, σ3, β, β′) ,

(3.6)
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where all parameters except τb are freely varied. The total fit function is the sum of

the products of the mass and tz fit functions for the signal and background. Figure 2

shows the distributions of the dimuon invariant mass and tz with the projections of the

fit superimposed. The invariant mass resolution is 13.0 ± 0.3 MeV/c2. The parameter µ

describing the bias of the tz resolution function is 2.3 ± 2.0 fs and the RMS of the tz
resolution function is 84 fs. As a measure of the fit quality, a χ2 is calculated using a

binned event distribution. The resulting fit probability for the tz distribution is 90%. The

fit gives a total yield of 3399± 65 J/ψ signal decays.

The fraction of signal J/ψ coming from b-hadron decays is measured to be Fb = fb
fp+fb

=

(6.7 ± 0.6)%. An absolute correction of 0.4% is applied based on simulation to take into

account a bias produced by events in which b-hadron decay products, other than the muons

from the J/ψ , are wrongly used to reconstruct the primary vertex. This leads to the result

Fb = (7.1± 0.6)% where the uncertainty is only statistical.

A simulated sample of inclusive, unpolarised J/ψ mesons is used to estimate the ge-

ometrical acceptance in each pT bin. The reconstruction efficiency, which combines the

J/ψ meson detection, reconstruction and selection efficiencies, is also computed from sim-

ulation as a function of pT and is corrected to account for the difference observed in the

tracking efficiency between data and simulation at
√
s = 7 TeV. This correction is about

1%. The efficiency of the hardware trigger is determined directly from data using a large

inclusive J/ψ sample at
√
s = 7 TeV triggered and selected with the same requirements as

those used in this analysis: the efficiency is calculated in small bins of the J/ψ transverse

momentum and rapidity and weighted according to the pT and y distributions as given

by the simulation at 2.76 TeV. The efficiency of the software trigger, which makes use of

the VELO information, is determined from simulation since the data at
√
s = 7 TeV were

taken with the VELO in the closed position. The total efficiency, calculated as the product

of acceptance, reconstruction and trigger efficiencies, and its components are displayed in

figure 3 as a function of pT. A non-zero polarisation of the J/ψ at production can affect

the total efficiency [1]. The results quoted in this article assume that the J/ψ mesons are

produced unpolarised.

4 Luminosity determination

To determine the integrated luminosity, an effective interaction rate is continuously mea-

sured during data taking and an absolute calibration is performed with a dedicated van

der Meer (VDM) scan [17]. The strategy is similar to that developed for the
√
s = 7 TeV

running [18].

The VDM method exploits the ability to move the beams in both transverse coordinates

with high precision and thus to scan the colliding beams with respect to each other. The

limiting systematic uncertainty affecting the VDM measurement arises from the knowledge

of the number of protons in the colliding bunch pairs. These are measured with two types

of beam current transformers installed in the LHC [19–21]. The DCCT (DC Current

Transformer) measures the total beam current, and is thus used to constrain the total

number of particles. The uncertainty associated with the DCCT calibration is 2.7% [22–
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Uncertainty on relative normalisation

Counter stability 0.5

µ variation among bunch crossings 0.5

Uncertainty on absolute normalisation

Statistical error of the VDM scan 0.2

Total beam current 2.7

Individual bunch population 0.9

Protons outside nominal bunches 0.4

Length scale calibration 1.0

Non-reproducibility in similar scans at
√
s = 7 TeV 2.1

Total uncertainty 3.8

Table 1. Relative systematic uncertainties on the luminosity (%).

24]. The other transformer, the FBCT (Fast Beam Current Transformer) is used to measure

the relative charges of the individual bunches. The uncertainty in its offset and linearity

contributes a 0.9% uncertainty to the overall luminosity [22–24]. A small fraction of protons

in the LHC may be captured outside the nominally filled bunch slots. This contribution,

which needs to be subtracted from the DCCT measurement, is estimated to be 2.5% from

the number of beam-gas events in nominally empty bunch crossings. Due to the small

number of such events and uncertainties in the trigger efficiency, the subtraction introduces

a cross-section uncertainty of 0.4%. The uncertainty in the length-scale calibration, which

affects the beam separation values, contributes 1% to the systematic uncertainty in the

luminosity. Finally, a 2.1% uncertainty is assigned to account for a non-reproducibility of
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the VDM results observed when performing similar luminosity calibration measurements

at
√
s = 7 TeV, as decribed in ref. [18].

The integrated luminosity for the runs considered in this analysis is measured to be

70.6 ± 2.7 nb−1. A summary of the contributions to the overall luminosity uncertainty is

provided in table 1. The uncertainties are uncorrelated and therefore added in quadrature.

5 Systematic uncertainties

The different contributions to the systematic uncertainty affecting the cross-section mea-

surement are summarised in table 2. Correction factors estimated directly from data to

take into account residual differences between simulation and data are also detailed.

The influence of the choice of the fit function used to describe the shape of the dimuon

mass distribution is estimated by fitting the J/ψ invariant mass distribution with the sum

of two Crystal Ball functions. The relative difference of 2.2% in the number of signal events

is taken as systematic uncertainty.

A fraction of J/ψ events have a lower mass because of the radiative tail. Based on

Monte Carlo studies, 5% of the J/ψ signal is estimated to be outside the analysis mass

window (Mµµ < 3.0 GeV/c2) and not counted as signal. The fitted signal yields are therefore

corrected, and an uncertainty of 1% is assigned to the cross-section measurement based on

a comparison between the radiative tail observed in data and simulation.

To cross-check and assign a systematic uncertainty to the Monte Carlo determination

of the muon identification efficiency, the single track muon identification efficiency is mea-

sured on data using a tag-and-probe method. This method reconstructs J/ψ candidates in

which one muon is identified by the muon system (“tag”) and the other one (“probe”) is

identified by selecting a track with a minimum-ionising energy deposition in the calorime-

ters. The absolute muon identification efficiency is then evaluated on the probe muon, as a

function of the muon momentum and found to be larger than 95%. The ratio of the muon

identification efficiency measured in data to that obtained in the simulation is convolved

with the momentum distribution of muons from J/ψ to obtain an efficiency correction.

This factor is found to be 1.024± 0.011 and is consistent with being constant over the full

J/ψ transverse momentum and rapidity range; the error on the correction factor is included

as a systematic uncertainty.

Studies at
√
s = 7 TeV have shown that the Monte Carlo simulation reproduces the

determination from data of the efficiency to reconstruct the two muon tracks from the J/ψ

decay within 0.8% to 1.1%, depending on the J/ψ transverse momentum. This difference

is taken as a systematic uncertainty. An additional uncertainty of 1% per track is assigned

to cover differences in the efficiency of the track χ2/ndf cut between data and simulation.

Similarly, for the selection based on the J/ψ vertex χ2 probability, a difference below 0.3%

is measured between the cut efficiency computed in data and simulation, which is assigned

as systematic uncertainty. To take into account the model dependence of the simulation

in the efficiency calculation, the main parameters of the Pythia 6.4 generator related to

prompt J/ψ production were varied. These parameters define the minimum pT cut-offs for

regularising the cross-section. A 4.5% effect on the total efficiency was observed.
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Source Systematic uncertainty

Correlated between bins

Mass fits 2.2

Radiative tail 1.0

Muon identification 1.1

Tracking efficiency 0.8 to 1.1

Track χ2 2.0

Vertexing 0.3

Model dependence 4.5

B(J/ψ → µ+µ−) 1.0

Luminosity 3.8

Uncorrelated between bins

Trigger 1.6 to 7.7

Applied only to J/ψ from b fraction

tz fit 10.0

Applied only to σ(pp→ bbX)

B(b→ J/ψX) 8.6

Table 2. Relative systematic uncertainties on the cross-section results and on the fraction of J/ψ

mesons from b-hadron decay (%).

The hardware trigger efficiency is determined using a sample of events at
√
s = 7 TeV

that would still be triggered if the J/ψ candidate were removed. The software trigger

efficiency is obtained from the simulation. Its uncertainty is evaluated by comparing true

and measured trigger efficiency using a trigger-unbiased sample of simulated J/ψ events.

Uncertainties related to the tz fit procedure are taken into account by varying the

slope of the exponential function of the J/ψ from b component by its uncertainty in the

simulation (2%). The resulting 10% variation of the number of J/ψ from b is used as a

systematic uncertainty that affects the measurement of Fb. The influence of the background

parametrisation was studied by varying the number of exponential functions in eq. (3.5)

and found to be negligible. Furthermore, an uncertainty of 8.6% on the average branching

fraction of b decays to a final state containing a J/ψ meson contributes to the uncertainty

on the extrapolation to the total bb cross-section.

6 Results

The measured differential cross-section for inclusive J/ψ production as a function of pT,

after all corrections and assuming no polarisation, is given in table 3 and displayed in

figure 4. The integrated inclusive cross-section for J/ψ production in the defined fiducial
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pT (GeV/c) dσ/dpT [nb/( GeV/c)]

0−1 1270± 60± 130

1−2 1780± 70± 160

2−3 1290± 50± 90

3−4 700± 40± 50

4−5 313± 22± 24

5−6 142± 13± 10

6−7 61± 8± 4

7−12 14± 2± 1

Table 3. Differential cross-section dσ/dpT at
√
s = 2.76 TeV for inclusive J/ψ production in bins

of pT. The rapidity range covered is 2.0 < y < 4.5. The first uncertainty is statistical and the

second is systematic.

region is

σ (J/ψ , pT < 12 GeV/c, 2.0 < y < 4.5) = 5.6± 0.1± 0.4µb.

The first uncertainty is statistical and the second systematic. Studies indicate that this

result could change by up to 20% assuming fully longitudinal or fully transverse J/ψ po-

larisation [1]. The fraction of J/ψ from b is measured to be

Fb = (7.1± 0.6± 0.7)%

in the same acceptance range, pT < 12 GeV/c and 2.0 < y < 4.5.

From the above results, one can deduce

σ (J/ψ from b, pT < 12 GeV/c, 2.0 < y < 4.5) = 400± 35± 49 nb,

in good agreement with the theoretical prediction of 370+170
−110 nb, based on NLO calculations

described in ref. [25]. In addition, the total bb production cross-section is computed as

σ(pp→ bbX) = α4π
σ (J/ψ , pT < 12 GeV/c, 2.0 < y < 4.5)× Fb

2B(b→ J/ψX)
, (6.1)

where the factor α4π = 6.3 is an extrapolation factor of the cross-section from the measured

to the full kinematic region. This factor is obtained using the simulation software described

previously. The inclusive b→ J/ψX branching fraction is B(b→ J/ψX) = (1.16± 0.10)% [8].

The resulting total bb cross-section is σ(pp→ bbX) = 110± 9± 16µb. No systematic un-

certainty has been included for the extrapolation factor α4π estimated from the simulation.

The value of the extrapolation factor given by NLO calculations is 6.1 [25].

7 Conclusions

The differential cross-section for inclusive J/ψ production is measured as a function of the

J/ψ transverse momentum in the forward region, 2.0 < y < 4.5. The analysis is based on
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Figure 4. Differential production cross-section for inclusive J/ψ production in the rapidity range
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a data sample corresponding to an integrated luminosity of 71 nb−1 collected by the LHCb

experiment at the Large Hadron Collider at a centre-of-mass energy of
√
s = 2.76 TeV.

The results obtained are in good agreement with earlier measurements of the inclusive J/ψ

production cross-section in pp collisions at the same centre-of-mass energy, performed by

ALICE in the region 2.5 < y < 4.0 [26]. A first measurement of the production of J/ψ

from b-hadron decays at 2.76 TeV is also obtained.
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i Università di Genova, Genova, Italy
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