105 research outputs found

    Using machine learning techniques to track individuals & their fitness activities

    Get PDF
    The use of wearable devices for fitness and health tracking is on an upward curve with a range of devices now available from a number of manufacturers. The devices work with smart devices to exchange data via Bluetooth communication protocol. This paper presents the results of an initial study on the security and privacy weaknesses of wearable fitness devices. It discusses methods to 1) capture and process data sent from a wearable device to its paired smartphone during synchronization and 2) analyze the records to track individuals and make predictions. The data analysis methods use supervised machine-learning techniques to train a classifier for associating synchronization records with the individuals, their physical activities, and conditions under which they were performed. Results of the study show that the methods allow individuals and their activities to be tracked, both of which infringe on the privacy of the user. The paper also provides recommendations on improving the security of wearable devices based on the initial research results

    Neuroimaging and Neuromodulation: Complementary Approaches for Identifying the Neuronal Correlates of Tinnitus

    Get PDF
    An inherent limitation of functional imaging studies is their correlational approach. More information about critical contributions of specific brain regions can be gained by focal transient perturbation of neural activity in specific regions with non-invasive focal brain stimulation methods. Functional imaging studies have revealed that tinnitus is related to alterations in neuronal activity of central auditory pathways. Modulation of neuronal activity in auditory cortical areas by repetitive transcranial magnetic stimulation (rTMS) can reduce tinnitus loudness and, if applied repeatedly, exerts therapeutic effects, confirming the relevance of auditory cortex activation for tinnitus generation and persistence. Measurements of oscillatory brain activity before and after rTMS demonstrate that the same stimulation protocol has different effects on brain activity in different patients, presumably related to interindividual differences in baseline activity in the clinically heterogeneous study cohort. In addition to alterations in auditory pathways, imaging techniques also indicate the involvement of non-auditory brain areas, such as the fronto-parietal “awareness” network and the non-tinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdale. Involvement of the hippocampus and the parahippocampal region putatively reflects the relevance of memory mechanisms in the persistence of the phantom percept and the associated distress. Preliminary studies targeting the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the parietal cortex with rTMS and with transcranial direct current stimulation confirm the relevance of the mentioned non-auditory networks. Available data indicate the important value added by brain stimulation as a complementary approach to neuroimaging for identifying the neuronal correlates of the various clinical aspects of tinnitus

    Elaboração do mapa de riscos do laboratório de pós-colheita, industrialização e qualidade de grãos / Elaboration of the risk map of the post-harvest laboratory, industrialization and grain quality

    Get PDF
    O mapa de riscos visa informar de forma ilustrativa aos trabalhadores sobre os riscos do ambiente (físico, químico, biológico, ergonômico e de acidentes) e, desta forma, reduzir a nocividade do local de trabalho.Os círculos, de diferentes tamanhos e cores estão relacionados à intensidade e tipo dos riscos.O objetivo deste trabalho foi elaborar os mapas de risco das salas pertencentes ao Laboratório de Pós-Colheita, Industrialização e Qualidade de Grãos da Universidade Federal de Pelotas.A avaliação dos riscos foi realizada através da observação do local (sala de beneficiamento de arroz, moagem e operações hidrotérmicas, e a sala de análises e aulas práticas) e conversa com os usuários na qual eram definidas probabilidades de ocorrência e gravidade para obter a intensidade. Na sala de beneficiamento de arroz, o ruído, ar sob pressão, postura no posto de trabalho, pouca iluminação e equipamentos sem proteção foram os riscos de maior intensidade. Já sala de análises e aulas praticas nenhum risco foi de grande intensidade, devendo os de intensidade média serem priorizados. Dessa forma, os resultados mostraram os locais e riscos que deveriam ser priorizados no laboratório e, portanto, auxiliaram com informações para tornar o ambiente de trabalho mais salubre

    Enhanced Long-Path Electrical Conduction in ZnO Nanowire Array Devices Grown via Defect-Driven Nucleation

    Get PDF
    Vertical arrays of nanostructures have been widely used as major components in some of the most ground-breaking modern research-based devices, and ZnO nanowires have received particular attention because of their favorable electronic properties. Using a local multiprobe technique to measure the properties of individual ZnO nanowires in vertical arrays, we show for the first time that for metal-catalyzed ZnO nanowire growth the electrical contribution of individual wires to a device is highly dependent on the fate of the catalyst nanoparticle during growth. To overcome the limitations of metal-catalyzed growth, nanowires grown from a defect-driven nucleation process are shown to provide high-quality device structures with excellent long-path electrical conduction

    Influence of organic molecules on the aggregation of TiO2 nanoparticles in acidic conditions

    Get PDF
    Engineered nanoparticles released into the environment may interact with natural organic matter (NOM). Surface complexation affects the surface potential, which in turn may lead to aggregation of the particles. Aggregation of synthetic TiO2 (anatase) nanoparticles in aqueous suspension was investigated at pH 2.8 as a function of time in the presence of various organic molecules and Suwannee River fulvic acid (SRFA), using dynamic light scattering (DLS) and high-resolution transmission electron microscopy (TEM). Results showed that the average hydrodynamic diameter and ?-potential were dependent on both concentration and molecular structure of the organic molecule. Results were also compared with those of quantitative batch adsorption experiments. Further, a time study of the aggregation of TiO2 nanoparticles in the presence of 2,3-dihydroxybenzoic acid (2,3-DHBA) and SRFA, respectively, was performed in order to observe changes in ?-potential and particle size over a time period of 9 months. In the 2,3-DHBA-TiO2 system, ?-potentials decreased with time resulting in charge neutralization and/or inversion depending on ligand concentration. Aggregate sizes increased initially to the micrometer size range, followed by disaggregation after several months. No or very little interaction between SRFA and TiO2 occurred at the lowest concentrations tested. However, at the higher concentrations of SRFA, there was an increase in both aggregate size and the amount of SRFA adsorbed to the TiO2 surface. This was in correlation with the ?-potential that decreased with increased SRFA concentration, leading to destabilization of the system. These results stress the importance of performing studies over both short and long time periods to better understand and predict the long-term effects of nanoparticles in the environment

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics

    Get PDF
    Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.We thank J. England for assistance with calculating ecological quality and the biomonitoring indices in the UK. Funding for authors, data collection and processing was provided by the European Union Horizon 2020 project eLTER PLUS (grant number 871128). F.A. was supported by the Swiss National Science Foundation (grant numbers 310030_197410 and 31003A_173074) and the University of Zurich Research Priority Program Global Change and Biodiversity. J.B. and M.A.-C. were funded by the European Commission, under the L‘Instrument Financier pour l’Environnement (LIFE) Nature and Biodiversity program, as part of the project LIFE-DIVAQUA (LIFE18 NAT/ES/000121) and also by the project ‘WATERLANDS’ (PID2019-107085RB-I00) funded by the Ministerio de Ciencia, Innovación y Universidades (MCIN) and Agencia Estatal de Investigación (AEI; MCIN/AEI/10.13039/501100011033/ and by the European Regional Development Fund (ERDF) ‘A way of making Europe’. N.J.B. and V.P. were supported by the Lithuanian Environmental Protection Agency (https://aaa.lrv.lt/) who collected the data and were funded by the Lithuanian Research Council (project number S-PD-22-72). J.H. was supported by the Academy of Finland (grant number 331957). S.C.J. acknowledges funding by the Leibniz Competition project Freshwater Megafauna Futures and the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung or BMBF; 033W034A). A.L. acknowledges funding by the Spanish Ministry of Science and Innovation (PID2020-115830GB-100). P.P., M.P. and M.S. were supported by the Czech Science Foundation (GA23-05268S and P505-20-17305S) and thank the Czech Hydrometeorological Institute and the state enterprises Povodí for the data used to calculate ecological quality metrics from the Czech surface water monitoring program. H.T. was supported by the Estonian Research Council (number PRG1266) and by the Estonian national program ‘Humanitarian and natural science collections’. M.J.F. acknowledges the support of Fundação para a Ciência e Tecnologia, Portugal, through the projects UIDB/04292/2020 and UIDP/04292/2020 granted to the Marine and Environmental Sciences Centre, LA/P/0069/2020 granted to the Associate Laboratory Aquatic Research Network (ARNET), and a Call Estímulo ao Emprego Científico (CEEC) contract.Peer reviewe
    corecore