5,655 research outputs found

    SUSY Searches at LEP

    Full text link
    Between 1995-2000, the LEP e+e- collider has been operated above the Z0 peak, at centre-of-mass energies sqrt(s) = 130-209 GeV. Searches for supersymmetric particles have been performed using these data samples. The results from the four LEP experiments have been combined. Model independent limits on the pair-production cross-sections of supersymmetric particles and constraints on their masses are presented in the context of the Minimal Supersymmetric Standard Model (MSSM) and in the context of gauge-mediated supersymmetry breaking models (GMSB). Results assuming an R-parity violating scenario are also reviewed.Comment: 4 pages, 6 figures, Proceedings of Moriond 03 - QCD wee

    Other searches at LEP

    Get PDF
    During the year 2000, LEP has been operated at centre-of-mass energies up to sqrt(s) = 209 GeV. New particle searches have been performed using these data samples. Model independent limits on the production cross-sections and mass limits in the context of the Minimal Supersymmetric Standard Model (MSSM) assuming R-parity violation and in the context of gauge-mediated supersymmetry breaking theories (GMSB) are presented. Searches for technicolor, excited leptons and leptoquarks are also reviewed.Comment: Proceedings of the Conference: "QCD and High Energy Hadronic Interactions", Rencontres de Moriond, 18-24 March 200

    Sphalerons at finite temperature

    Full text link
    We construct the sphaleron for several temperature dependent effective potentials. We determine the sphaleron energy as a function of temperature and demonstrate that the sphaleron energy at a given temperature TT is well approximated by the sphaleron energy at temperature zero scaled by the ratio of the vacuum expectation values of the Higgs field at temperatures TT and zero. We address the cosmological upper bound on the Higgs mass.Comment: 14 pages, plain tex, 5 figures appended as postscript files at the end of the paper. MONS-93/01, THU-93/0

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures

    Alignment of quasar polarizations with large-scale structures

    Full text link
    We have measured the optical linear polarization of quasars belonging to Gpc-scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is of the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures.Comment: Accepted for publication in Astronomy and Astrophysic

    The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    Get PDF
    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα\alpha line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα\alpha favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations.Comment: 11 pages, 4 figures, A&

    Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    Full text link
    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding to the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30\% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 \AA. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as TR1/νT \propto R^{-1/\nu}. We find a most likely source half-light radius of R1/2=0.61×1016R_{1/2} = 0.61 \times 10^{16}\,cm (i.e., 0.002\,pc) at 0.18\,μ\mum, and a most-likely index of ν=0.4\nu=0.4. The standard disc (ν=4/3\nu=4/3) model is not ruled out by our data, and is found within the 95\% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature.Comment: Accepted for publication in Astronomy and Astrophysics. 12 pages. Minor changes w.r.t. v1 (language editing, Fig. 5-6

    Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223

    Full text link
    Using infrared spectra of the z = 1.693 quadruply lensed quasar HE0435-1223 acquired in 2009 with the spectrograph SINFONI at the ESO Very Large Telescope, we have detected a clear microlensing effect in images A and D. While microlensing affects the blue and red wings of the H{\alpha} line profile in image D very differently, it de-magnifies the line core in image A. The combination of these different effects sets constraints on the line-emitting region; these constraints suggest that a rotating ring is at the origin of the H{\alpha} line. Visible spectra obtained in 2004 and 2012 indicate that the MgII line profile is microlensed in the same way as the H{\alpha} line. Our results therefore favour flattened geometries for the low-ionization line-emitting region, for example, a Keplerian disk. Biconical models cannot be ruled out but require more fine-tuning. Flux ratios between the different images are also derived and confirm flux anomalies with respect to estimates from lens models with smooth mass distributions.Comment: 6 pages, 4 figures, 3 tables, accepted by A&A on 10 April 201
    corecore