1,927 research outputs found

    Probing the connectivity of neural circuits at single-neuron resolution using high-throughput DNA sequencing

    Get PDF
    There is growing excitement in determining the complete connectivity diagram of the brain—the "connectome". So far, the complete connectome has been established for only one organism, C. elegans, with 302 neurons connected by about 7000 synapses—and even this was a heroic task, requiring over 50 person-years of labor. Like all current approaches, this reconstruction was based on microscopy. Unfortunately, microscopy is poorly suited to the study of neural connectivity because brains are macroscopic structures, whereas synapses are microscopic. Nevertheless, there are several large-scale projects underway to scale up high-throughput microscopic approaches to the connectome.
Here we present a completely novel method for determining the brain's wiring diagram based on high-throughput DNA sequencing technology, which has not previously been applied in the context of neural connectivity. The appeal of using sequencing is that it is getting faster and cheaper exponentially: it will soon be routine to sequence an entire human genome (~3B nucleotides) within one day for $1000.
Our approach has three main components. First, we express a unique sequence of nucleotides—a DNA "barcode"—in individual neurons. A barcode consisting of a random string of even 30 nucleotides can uniquely label 10^{18} neurons, far more than the number of neurons in a mouse brain (fewer than 100 million). Second, we use a specially engineered transsynaptic virus to transport “host” barcodes from one neuron to synaptically coupled partners; after transsynaptic spread, each neuron contains copies of "invader" barcodes from other synaptically coupled neurons, as well its own "host" barcode. Third, we join pairs of host and invader barcodes into single pieces of DNA suitable for high-throughput sequencing. 
Modern sequencing technology could in principle yield the connectivity diagram of the entire mouse brain. Similar approaches can be applied to Drosophila and C. elegans. 
&#xa

    Memories of worms and flies: from gene to behavior

    Get PDF

    Parallel processing of olfactory memories in Drosophila

    Get PDF
    One of the hallmarks of both memory and the underlying synaptic plasticity is that they each rely on short-lived and longer-lived forms. Short-lived memory is thought to rely on modification to existing proteins, whereas long-term memory requires induction of new gene expression. The most common view is that these two processes rely on signaling mechanisms within the same neurons. We recently demonstrated a dissection of the signaling requirements for short and long-lived memory into distinct sets of neurons. Using an aversive olfactory conditioning task in Drosophila, we found that cAMP signaling in different neuron cell types is sufficient to support short or long-term memory independently

    Transposable Elements in TDP-43-Mediated Neurodegenerative Disorders

    Get PDF
    Elevated expression of specific transposable elements (TEs) has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases

    YfmK is a Novel Nε-lysine Acetyltransferase that Directly Acetylates the Histone-like Protein HBsu in Bacillus Subtilis

    Get PDF
    Recently, Ne-lysine acetylation was realized to be a prevalent bacterial post-translational modification (PTM), contrary to the historical notion that this was a rare occurrence. Acetylation can impact protein function in multiple ways, by modifying conformation, interactions, subcellular localization or activity. In bacteria, hundreds of proteins are known to be acetylated, including those involved essential processes such as DNA replication, nucleoid organization, translation, cell shape, central carbon metabolism, and even several virulence factors. Despite the growing recognition that numerous proteins are acetylated, the biological significance of the vast majority of these modifications in any bacteria remains largely unknown. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven novel acetylation sites in vivo. HBsu is a bacterial nucleoid-associated protein, which is largely responsible for chromosome compaction and the coordination of DNA processes. Despite the lack of sequence or structural homology, it is generally considered to be a functional homolog of eukaryotic histones. We investigated whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we showed that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. By screening knockouts of the ~50 putative Gcn5-N-acetyltransferase (GNAT)-domain encoding genes in B. subtilis for their effects on DNA compaction, five candidates were identified that may encode transacetylases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate HBsu and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro,suggesting that it is the second identified protein acetyltransferase in B. subtilis. We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogously to the role of histone acetylation in eukaryotes. With the alarming rise in antibiotic resistance, the need to develop novel therapeutics is critical. Bacterial protein acetylation represents a world of untapped potential that may uncover new drug targets to replace or supplement our antiquated antibiotic arsenal. With proper study, the enzymes involved in regulation (i.e. acetylases and deacetylases) or the acetylated form of a key protein (i.e. virulence factors, essential genes, etc.) may provide valuable, druggable targets. The targeting of bacterial protein acetylation is a practical option, as targeting enzymes involved in acetylation regulation has been successful in treatment of certain cancers, latent viral and fungal infections

    MicroRNA-276a Functions in Ellipsoid Body and Mushroom Body Neurons for Naive and Conditioned Olfactory Avoidance in Drosophila

    Get PDF
    MicroRNA (miRNA)-mediated gene regulation plays a key role in brain development and function. But there are few cases in which the roles of individual miRNAs have been elucidated in behaving animals. We report a miR-276a::DopR regulatory module in Drosophila that functions in distinct circuits for naive odor responses and conditioned odor memory. Drosophila olfactory aversive memory involves convergence of the odors (conditioned stimulus) and the electric shock (unconditioned stimulus) in mushroom body (MB) neurons. Dopamine receptor DopR mediates the unconditioned stimulus inputs onto MB. Distinct dopaminergic neurons also innervate ellipsoid body (EB), where DopR function modulates arousal to external stimuli. We demonstrate that miR-276a is required in MB neurons for memory formation and in EB for naive responses to odors. Both roles of miR-276a are mediated by tuning DopR expression. The dual role of this miR-276a::DopR genetic module in these two neural circuits highlights the importance of miRNA-mediated gene regulation within distinct circuits underlying both naive behavioral responses and memory

    Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar

    Get PDF
    We have identified 2 olfactory specific proteins in the gypsy moth Lymantria dispar that are uniquely associated with the male antennae, the principal olfactory organs of this animal. These proteins were the major soluble protein components of the olfactory sensilla, present in equivalent amounts. Both proteins comigrated on SDS-PAGE, showing an apparent molecular mass of 15,000 Da but migrated separately on non-SDS-PAGE, indicating differences in net charge. N-terminal amino acid sequence analysis showed that the 2 proteins share 50% identity, indicating that they are genetically distinct homologs. Both proteins bound the L. dispar sexpheromone, associated with antisera prepared against the previously identified phermone-binding protein (PBP) of the moth Antheraea polyphemus, and shared sequence identity with the A. polyphemus PBP. These 2 proteins are therefore identified as L. dispar PBPs and are termed PBP1 and PBP2 based on their migration differences on non-SDS-PAGE. It is estimated that PBP1 and PBP2 are present in the sensilla lumen at a combined concentration of 13.4 mM. The expression of the L. dispar PBPs was examined during the 11 d development of the adult antenna. PBP1 and PBP2 were first detected by non-SDS-PAGE analysis and Coomassie blue staining 3 d before adult eclosion, on day A-3. Levels increased, reaching a plateau on day A-1 that continued into adult life. In vivo labeling studies indicated that the rate of PBP synthesis increased from A-3 to a plateau on A-2, where it remained into adult life. In vitro translations of antennal mRNAs indicated that translatable PBP mRNA was available at a very low level on day A-4, increased slightly on A-3 and dramatically on A-2, and remained at a high level into adult life. PBP mRNA represented the major translatable mRNA in the antenna during this period. It was estimated that the PBPs undergo a combined steady-state turnover of 8 x 10(7) molecules/hr/sensillum. Cursory in vivo and in vitro translation studies of antennal mRNA from A. polyphemus and Manduca sexta showed similar temporal patterns of PBP expression, suggesting that the L. dispar observations are general

    Induction of natural competence in Bacillus cereus ATCC14579

    Get PDF
    Natural competence is the ability of certain microbes to take up exogenous DNA from the environment and integrate it in their genome. Competence development has been described for a variety of bacteria, but has so far not been shown to occur in Bacillus cereus. However, orthologues of most proteins involved in natural DNA uptake in Bacillus subtilis could be identified in B. cereus. Here, we report that B. cereus ATCC14579 can become naturally competent. When expressing the B. subtilis ComK protein using an IPTG-inducible system in B. cereus ATCC14579, cells grown in minimal medium displayed natural competence, as either genomic DNA or plasmid DNA was shown to be taken up by the cells and integrated into the genome or stably maintained respectively. This work proves that a sufficient structural system for DNA uptake exists in B. cereus. Bacillus cereus can be employed as a model system to investigate the mechanism of DNA uptake in related bacteria such as Bacillus anthracis and Bacillus thuringiensis. Moreover, natural competence provides an important tool for biotechnology, as it will allow more efficient transformation of B. cereus and related organisms, e. g. to knockout genes in a high-throughput way.</p

    Sequencing the Connectome

    Get PDF
    Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC ("barcoding of individual neuronal connections"), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale--sequencing billions of nucleotides per day is now routine--is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research

    Essential conditions for evolution of communication within a species

    Full text link
    A major obstacle in analyzing the evolution of information exchange and processing is our insufficient understanding of the underlying signaling and decision-making biological mechanisms. For instance, it is unclear why are humans unique in developing such extensive communication abilities. To treat this problem, a method based on the mutual information approach is developed that evaluates the information content of communication between interacting individuals through correlations of their behavior patterns (rather than calculating the information load of exchanged discrete signals, e.g. Shannon entropy). It predicts that correlated interactions of the indirect reciprocity type together with affective behavior and selection rules changing with time are necessary conditions for the emergence of significant information exchange. Population size variations accelerate this development. These results are supported by evidence of demographic bottlenecks, distinguishing human from other species' (e.g. apes) evolution line. They indicate as well new pathways for evolution of information based phenomena, such as intelligence and complexity.Comment: Final version to appear in Journal of Theoretical Biology, see DOI Extended introduction, notation is changed to fit the standar
    corecore