267 research outputs found

    Reduced-dimension clustering for vegetation segmentation

    Get PDF
    Segmentation of vegetation is a critical step in using machine vision for field automation tasks. A new method called reduced-dimensionclustering (RDC) was developed based on theoretical considerations about the color distribution of field images. RDC performed unsupervised classification of pixels in field images into vegetation and background classes. Bayes classifiers were then trained and used for vegetation segmentation. The performance of the classifiers trained using the RDC method was compared with that of other segmentation methods. The RDC method produced segmentation performance that was consistently high, with average segmentation success rates of 89.6% and 91.9% across both cloudy and sunny lighting conditions, respectively. Statistical analyses of segmentation performance coupled with three-dimensional visualization of classifier decision surfaces produced insight into why classifier performance varied across the methods. These results should lead to improvements in segmentation methods for field images acquired under variable lighting conditions

    Narrow-band and derivative-based vegetation indices for hyperspectral data

    Get PDF
    Hyperspectral remote sensing imagery was collected over a soybean field in central Illinois in mid-June 2001 before canopy closure. Estimates of percent vegetation cover were generated through the processing of RGB (red, green, blue) digital images collected on the ground with an automated crop mapping system. A comparative study was completed to test the ability of broad-band, narrow-band, and derivative-based vegetation indices to predict percent soybean cover at levels less than 70%. Though remote sensing imagery is commonly analysed using reference data collected at random points over a scene of interest, the analysis of the hyperspectral imagery in this research was performed on a pixel-by-pixel basis over the field area covered by the automated crop mapping system. Narrow-band and derivative-based indices utilizing the finer spectral detail of hyperspectral data performed better than the older broad-band indices developed for use with multispectral data. Specifically, second-derivative indices measuring the curvature in the green region (514-556 nm), longer wavelength red region (640-694 nm), and short wavelength NIR (712-778 nm) performed well. Narrow-band indices, based on the standard ratio index equations, which used values from the blue (472-490 nm) and green (514-550 nm) regions, also performed well for many of the datasets. The performance of all indices was shown to suffer over areas of brighter soil background, and the use of ratio-based narrow-band indices that did not incorporate NIR reflectance values performed best in this cas

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Body-centered-cubic Ni and its magnetic properties

    Get PDF
    The body-centered-cubic (bec) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bec Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52 \uc2\ub1 0.08 \uce\ubcB/atom. The cubic magneto-crystalline anisotropy of bec Ni is determined to be +4.0 \uc3\u97 105 ergs \uc2\ub7 cm-3, as opposed to -5.7 \uc3\u97 10 4 ergs \uc2\ub7 cm-3 for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bec Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    q-Virasoro Modular Double and 3d Partition Functions

    Get PDF

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore