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NARROW-BAND AND DERIVATIVE-BASED VEGETATION

INDICES FOR HYPERSPECTRAL DATA

K. R. Thorp,  L. Tian,  H. Yao,  L. Tang

ABSTRACT. Hyperspectral remote sensing imagery was collected over a soybean field in central Illinois in mid-June 2001
before canopy closure. Estimates of percent vegetation cover were generated through the processing of RGB (red, green, blue)
digital images collected on the ground with an automated crop mapping system. A comparative study was completed to test
the ability of broad-band, narrow-band, and derivative-based vegetation indices to predict percent soybean cover at levels
less than 70%. Though remote sensing imagery is commonly analyzed using reference data collected at random points over
a scene of interest, the analysis of the hyperspectral imagery in this research was performed on a pixel-by-pixel basis over
the field area covered by the automated crop mapping system. Narrow-band and derivative-based indices utilizing the finer
spectral detail of hyperspectral data performed better than the older broad-band indices developed for use with multispectral
data. Specifically, second-derivative indices measuring the curvature in the green region (514-556 nm), longer wavelength
red region (640-694 nm), and short wavelength NIR (712-778 nm) performed well. Narrow-band indices, based on the
standard ratio index equations, which used values from the blue (472-490 nm) and green (514-550 nm) regions, also
performed well for many of the datasets. The performance of all indices was shown to suffer over areas of brighter soil
background, and the use of ratio-based narrow-band indices that did not incorporate NIR reflectance values performed best
in this case.
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egetation indices have commonly been used to
quantify amounts of vegetation present in reflec-
tance data (Jordan, 1969; Ashley and Rea, 1975;
Huete, 1988; Thenkabail et al., 2000). To date,

most vegetation indices have been developed for use with
multispectral  remote sensing imagery and other reflectance
data having a relatively broad bandwidth. With recent devel-
opments in hyperspectral technology, reflectance data can
now be collected with a very high spectral resolution, much
greater than that of the older multispectral data. The advent
of this new technology has generated much interest in the de-
velopment of new vegetation indices such that the greater
spectral detail of hyperspectral data can be utilized. Recently,
hyperspectral datasets have been used in the development of
narrow-band vegetation indices (Thenkabail et al., 2000)
and derivative-based vegetation indices (Tsai and Philpot,
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1998). Narrow-band indices function similarly to the older
broad-band indices; however, the range of reflectance values
used in the index equations are refined to exploit the fine
spectral detail in hyperspectral data. Derivative-based
indices analyze the slope and curvature of reflectance curves
rather than reflectance values themselves and have been most
useful for analysis of the “red edge” in the spectral response
of vegetation (Datt and Paterson, 2000).

Soil background has been shown to affect the performance
of vegetation indices, and extensive research has been done
to examine the characteristics of reflectance measured over
partial canopies. Huete et al. (1985) concluded that standard
vegetation indices improperly modeled the effect of soil
brightness on partial canopy reflectance. Furthermore, soil
brightness influences were found to increase with increasing
canopy cover up to 60%, suggesting that soil and plant
spectra collectively interact in a non-additive, nonlinear
fashion to produce a composite spectral response. In a related
experiment,  Huete (1987) concluded that, in the case of
significant canopy coverage, only a small portion of red
radiation reaches the underlying soil surface due to intense
absorption by chlorophyll. On the other hand, the plant leaves
readily scatter and transmit near-infrared (NIR) radiation
deep into the canopy. Therefore, since vegetation can
differentially alter the intensity of radiant flux through the
canopy, the spectral response of underlying soil will exhibit
properties of both soil and vegetative reflectivity. Since soil
brightness determines the magnitude of this unique soil
response, it follows that errors in “greenness” measurements
by vegetation indices depend on both the quantity of
vegetation available for radiant flux differentiation and the
brightness of underlying soil. For this reason, the develop-
ment of soil-adjusted vegetation indices for vegetation
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assessments over variable soil backgrounds has also been an
important goal in remote sensing research (Huete, 1988;
Rondeaux et al., 1996).

OBJECTIVE

The objective of this study was to develop narrow-band
and derivative-based vegetation indices for hyperspectral
data and test their ability to accurately measure soybean
canopy coverage at levels less than 70%. The performance of
these indices was contrasted to that of older broad-band
indices, such as the normalized difference vegetation index
(NDVI). In addition, the effect of soil background on index
performance was studied.

MATERIALS AND METHODS
Data collection occurred over an 11.3 ha (28 acre) section

of a production soybean (Glycine max (L.) Merr.) field near
Mahomet, Illinois, as shown in figure 1. The primary soil
types for the study region included Drummer, Dana, Raub,
and Wyanet, which are all high-yielding, silt-loam soils
typical for the central Illinois area. On May 5, 2001,
glyphosate -tolerant soybeans were planted at a 38.1 cm
(15 in.) spacing in no-till corn (Zea mays L.) residue. Aerial
remote sensing imagery was collected over the study area
using Spectral Visions’ RDACS-H3 aerial hyperspectral
focal plane scanner (Mao, 2000), which could collect either
60 or 120 bands of reflectance data over the range of 472 to
826 nm. This corresponded to a 6 nm bandwidth for 60-band
images and a 3 nm bandwidth for 120-band images.
Sixty-band imagery of 0.5-meter spatial resolution was
collected for calculation of vegetation indices on June 13,
2001, while 120-band imagery at 2-meter spatial resolution
was collected for the analysis of the soil background on
April 24, 2001.

Ground reference data was collected on June 17, 2001,
using the real-time variable-rate application and crop
mapping system developed by Tang (2002). The system
incorporated two RGB cameras and positioning equipment

for automatic, sequential collection of RGB digital images
over the crop canopy as the vehicle, a Tyler Patriot XL-772
agricultural  sprayer, traveled through the field. Throughout
image acquisition, a medium-accuracy global positioning
system (GPS) receiver was used to record the geographic
location of the center point for each RGB image. Locations
for ground reference data collection were determined based
on the design of a variable-rate herbicide application
experiment that was carried out concurrently with data
collection for this experiment. A total of 12 sprayer passes
were successfully mapped. Each pass contained approxi-
mately 60 images that covered a 2.4 × 3.0 square meter (8 ×
10 square foot) area on the ground. A total of 718 images
covering 0.53 ha (1.32 acres) of field area were collected.
Laboratory analysis of these images at a later time provided
a large volume of ground reference information for use in the
analysis of vegetation indices for hyperspectral data.

GROUND-REFERENCE IMAGE PROCESSING
As described by Tang et al. (2002), a genetic algorithm-

based, supervised color image segmentation in the HSI (hue,
saturation, intensity) color space was used to separate plants
(crop and weeds) from the background (soil, rocks, and
residue) for his real-time, machine-vision-based, in-field
variability mapping and selective herbicide application
system. This algorithm was also used to generate measure-
ments of percent vegetation cover from the ground images in
this experiment. Before running the segmentation algorithm,
an environmentally adaptive look-up table (LUT) procedure
(Tian and Slaughter, 1998) was used to describe the range of
values in HSI color space that represented vegetation in the
images. The overall performance of the segmentation was
heavily dependent on a proper choice of values for the LUT,
which could vary depending on lighting conditions, soil
color, residue cover, and greenness of vegetation. LUTs were
optimized for each pass using an interactive routine devel-
oped by Tang (2002) that allowed the user to select “green”
pixels representing vegetation in the image. The HSI color
range of the selected pixels then became the new LUT for
vegetation segmentation. The algorithm was programmed to

Figure 1. Data collection over the study site. RGB digital images were collected in 12 passes of an automatic data collection system. Image locations
are overlaid on this 1-meter resolution hyperspectral image (June 13, 2001).
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Figure 2. Ground reference image segmentation: (a) ground reference images were (b) processed using a genetic algorithm-based, supervised color
image segmentation in HSI color space to generate an estimate for vegetation cover at each ground image location.

segment all the images from a single sprayer pass as a batch
process, each with a specifically tailored LUT. Figure 2
shows a ground image with its processed result.

HYPERSPECTRAL IMAGE PROCESSING

A variety of preprocessing steps was performed to prepare
the hyperspectral imagery for analysis, including both spatial
and spectral modifications. First, since raw-image spatial
distortions can be produced by roll, pitch, and yaw of the
aircraft during the scanner-based image collection process,
a correction procedure, developed by Yao et al. (2001), was
implemented to remove as much raw distortion in the
hyperspectral imagery as possible. Next, the images were
georeferenced to the Universal Transverse Mercator (UTM)
coordinate system using a variety of coordinate references
including a field boundary map and a USGS digital
orthoquad. For spectral correction, a minimum noise fraction
(MNF) transformation (Green et al., 1988) was used to
remove noise in the raw reflectance data. The imagery was
then calibrated to percent reflectance using the reflectance
measurements from ground-level radiometric targets in an
empirical line calibration procedure (Smith and Milton,
1999).

After the initial processing steps were completed for both
the ground reference dataset and the hyperspectral images, a
routine was developed for extraction of spectral data from the
imagery at the location of each ground reference image. In
this way, vegetation indices could be calculated from the
spectral information at each ground reference location, and
a correlation coefficient (r) could be calculated to relate
vegetation index calculations to measures of percent canopy
coverage from the ground-based images. To carry out this
objective,  a routine was developed using the Interactive Data
Language (IDL). Extra care was taken to ensure that the area
of spectral information extracted from the hyperspectral
imagery most accurately represented the area covered by the
ground-based images. For example, ground images were
usually more centered over spectral data extraction regions
with odd dimensions. In addition, higher resolution imagery
allowed for better centering of ground images over the

spectral data extraction region. For the 0.5-meter imagery
used in this analysis, the ground reference images were most
accurately overlaid on extraction regions covering a 5 ×
6 pixel area. For further details on the spectral data extraction
process, see Thorp (2002) or Thorp et al. (2002).

ANALYSIS OF VEGETATION INDICES
Reflectance data extracted from the 5 × 6 regions of

interest in the 0.5-meter hyperspectral imagery were aver-
aged to generate a single reflectance curve for each region.
Using the average spectral response for each region, a variety
of vegetation indices was calculated for a comparative
analysis. These included the older broad-band indices
developed for use with multispectral datasets, narrow-band
indices that utilized the finer spectral resolution of hyper-
spectral images, and derivative indices that focused on the
slope and curvature of the reflectance curves rather than the
actual reflectance values themselves. To analyze the perfor-
mance of the indices, r was calculated to determine the
relationship between the index values and the canopy
coverage estimates from the ground-based images. Coeffi-
cients were calculated separately for each sprayer pass and
collectively  for the entire ground reference dataset. In
addition, since the performance of vegetation indices has
been shown to vary based on soil background (Heute et al.,
1985) and since these datasets were collected prior to canopy
closure, the ground reference dataset was also divided
according to soil background for further analysis.

Division of Ground Reference Data According to Soil
Background

Two methods were attempted to define the location of
different soil backgrounds over the study area, so the ground
reference data could be divided accordingly. First, a second-
order digital soil survey of the study area was obtained, and
the ground reference data were separated by soil type using
a geographic information system (GIS). However, since the
soil survey was generated through the interpolation of soil
samples collected on a 0.4 ha (1 acre) grid, the resolution of
the survey was not high enough for accurate division of the
high-density ground reference data by soil type. Therefore,
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Figure 3. Bare soil image classification. An unsupervised classification algorithm was used to divide this (a) bare soil hyperspectral image (April 24,
2001) into (b) three soil classes, and this result was used to divide the ground reference dataset according to soil reflectance properties.

a better approach, which involved an unsupervised classifi-
cation of a bare soil hyperspectral image over the study site,
was attempted. On April 24, 2001, a 120-band bare soil hy-
perspectral image at 2.0-meter spatial resolution was col-
lected over the study site. After preprocessing steps were
completed for this imagery, an unsupervised classification al-
gorithm was used to divide the bare soil imagery into three
spectral classes, labeled light, medium, and dark. Based on
the result of the classified bare soil image, the ground refer-
ence data were divided according to soil reflectance, such
that vegetation index performance could be analyzed accord-
ing to soil reflectance properties. The bare soil image over the
study area along with its classified result are shown in fig-
ure 3.

Calculation of Broad-Band Vegetation Indices
To generate estimates for broad-band reflectance, the

hyperspectral reflectance values over a range of wavelengths
were averaged together. Similar to the approach used by
Thenkabail et al. (2000), hyperspectral wavebands from
760 nm to 826 nm were averaged to generate an NIR broad
band, and the wavebands from 634 nm to 688 nm were
averaged to generate a red broad band. With these simulated

broad-band reflectance values, six broad-band vegetation
indices, including the difference vegetation index (DVI), the
ratio vegetation index (RVI), the NDVI, the soil-adjusted
vegetation index (SAVI), the modified soil-adjusted vegeta-
tion index (MSAVI), and the optimized soil adjusted
vegetation index (OSAVI), were calculated from the reflec-
tance data extracted at each ground reference location. A
summary of the index equations can be found in table 1. For
each ground reference dataset, the resulting broad-band
index calculations were then correlated to the vegetation
cover measurements from the ground-based images. The
results of this correlation analysis are given in the APPENDIX.

Development and Calculation of Narrow-Band
Vegetation Indices

To develop a set of narrow-band vegetation indices, a
technique was borrowed from Thenkabail et al. (2000). Since
a total of 60 discrete spectral bands from 472 nm to 826 nm
were available in the 0.5-meter imagery, the six broad-band
equations in table 1 were used to calculate index values for
all possible two-band combinations of the 60 discrete bands
(1770 useful combinations) using reflectance values ex-
tracted from the 5 × 6 regions of interest. Coefficients were
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Table 1. Broad-band vegetation indices (λNIR is the broad-band near-infrared reflectance, and λred is the broad-band red reflectance).
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then calculated to find the strength of the linear correlation
between the index values and the corresponding vegetation
cover measurements. Contour plots, such as the one shown
in figure 4, were constructed to find the two-band combina-
tions that produced the highest correlation with vegetation
cover for each ground reference dataset. For all indices and
for all datasets, the contour plots showed a general trend simi-
lar to that in figure 4. Namely, there were four areas in the
contour plots where the r for two-band indices and vegeta-
tion cover were always higher. This indicated a potential for
the development of four narrow-band vegetation indices us-
ing the wavelengths at these areas. Through a visual inspec-
tion of the contour plot for each ground reference dataset, the
optimum range of wavelengths to be used for narrow-band
index calculations was found. A summary of the chosen
wavelength ranges is given in table 2.

The validity of these narrow-band indices can be
explained as they relate to vegetative reflectance properties.
Index 1 uses a portion of longer wavelength blue light (472
to 490 nm) and the portion of the green spectrum associated

with the increased reflectance of green light from chlorophyll
(514 to 550 nm). The index contrasts the wavelengths of
maximum green light reflectance to that of maximum blue
light absorbance. Index 2 involves a portion of longer red
wavelengths (646 to 670 nm) and a portion of wavelengths
between green and red light (586 to 616 nm). This index
measures the absorbance of longer wavelength red light as it
varies with changes in pigment content. Moreover, index 2
progresses from positive to negative values as more red light
is absorbed. Index 3 contrasts the longer portion of red
wavelengths (646 to 676 nm) with the wavelengths associat-
ed with the red edge (700 to 736 nm). With increasing
vegetation cover, red reflectance drops and the steepness of
the red edge increases, creating a greater contrast at these
wavelengths. Index 4 utilizes the wavelengths most com-
monly associated with the older broad-band indices. For this
index, a portion of the longer wavelength red region (652 to
688 nm) and a portion of the shorter NIR wavelengths (754
to 820 nm) were used. After the development of the optimum
two-band combinations, hyperspectral wavebands were
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Figure 4. Correlation coefficients for the narrow-band MSAVI and vegetation cover for all ground data. Contour plots such as these were used for
finding band combinations most highly correlated to vegetation cover. Correlation coefficients less than 0.45 were set to zero for easier interpretation
of the best bands.
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Table 2. Summary of wavelengths chosen for two-band index
calculations using narrow bands. The wavelength ranges were chosen

through a visual inspection of the contour plots, such as that in figure 4.
Index 1 Index 2 Index 3 Index 4

Wavelength range 1 (nm) 472-490 646-670 646-676 652-688

Wavelength range 2 (nm) 514-550 586-616 700-736 754-820

averaged over the optimum ranges, and each of the four com-
binations was used in the calculation of narrow-band indices
using the DVI, RVI, NDVI, SAVI, MSAVI, and OSAVI equa-
tions. Since the four narrow-band wavelength ranges were
used in six broad-band equations, a total of 24 narrow-band
indices were calculated. The resulting index values were then
correlated to the measures of vegetation cover for each of the
ground reference dataset divisions described previously. The
results of this analysis are found in the APPENDIX.

Development and Calculation of Derivative-Based
Indices

The final vegetation index calculations for the reflectance
data in this study were derivative-based. To perform the
derivative analysis, methods were adopted from Tsai and
Philpot (1998), who applied the Savitzky and Golay (1964)
convolution method for data smoothing and derivative
calculations to reflectance data. Using the Savitzky-Golay
method, shaped filter windows were convolved across the
bands of reflectance data to both smooth the data and
calculate derivatives at the same time in one pass of the filter.
Since Tsai and Philpot (1998) showed that the size of the
convolved filter had the greatest effect on the degree of
spectral smoothing, various filter sizes were tested to
determine the size that provided the optimum noise removal
without significant elimination of useful signal. To support
their convolution method, Savitzky and Golay (1964)
provided tables of coefficients to be used for various sizes of
filter windows. Later, Madden (1978) developed equations
from which filter window coefficients for the zeroth to fifth
order derivatives could be calculated. A C++ program
incorporating Madden’s (1978) equations was developed so
that filter window coefficients could be calculated for various
filter sizes. After making these calculations, the program
then convolved the resulting filter across the reflectance data
extracted from the 0.5-meter hyperspectral imagery.
Through a visual assessment of the resulting derivative
curves, an optimum filter size of 9 was chosen for the first
derivative by determining the smallest filter that provided a
smooth derivative curve. Similarly, a filter size of 15 was
chosen for the second derivative. A larger filter was required
for the second derivative because the noise in the original
signal was further magnified by the higher order derivative.

Once the optimum filter sizes were determined, the first
and second derivatives of the extracted hyperspectral
reflectance data were calculated. Examples of the calculated
first and second derivatives for a typical reflectance curve in
this dataset are shown in figure 5. The first derivative curve
contained two distinct peaks. The first, centered at 514 nm,
corresponded to the point of maximum slope as the
reflectance increased in the green portion of the visible
spectrum. The second, centered at 700 nm, corresponded to
the point of maximum slope at the red edge where the low red
reflectance increased to the high NIR reflectance. For the
second derivative curves, three distinct peaks existed. The
first, centered at 532 nm, corresponded to the wavelength at

which the reflectance reached a maximum in the green
portion of the visible spectrum. The second, centered at 676
nm, corresponded to the point of maximum curvature in the
longer red wavelengths as the reflectance began to rise
toward the red edge. The third, centered at 730 nm, indicated
the point at the red edge where the reflectance values began
to level off in the NIR region.

Derivative vegetation indices have been calculated by
integrating the area underneath the peaks in the derivative
curves (Chen et al., 1993). A similar method was adopted
here. To find the optimum integration range, derivative
calculations at each wavelength were correlated to the
ground reference vegetative cover measurements, and the
optimum integration ranges were chosen from wavelengths
whose derivative values were most highly correlated to
vegetation cover. Table 3 shows the wavelength ranges used
for calculation of derivative indices in this research. Once the
optimum wavelength ranges were chosen, derivative vegeta-
tion indices were calculated by integrating the area under the
first and second derivative curves for reflectance data
extracted from the 5 × 6 regions of interest. The resulting
index values were then correlated to the measurements of
vegetation cover for each ground reference dataset, as shown
in the APPENDIX.

RESULTS AND DISCUSSION
Results of the index analysis are shown in the APPENDIX,

where the top index for each dataset is highlighted in
boldface. For each vegetation index, r was calculated for
each division of the ground data, including each sprayer pass,
soil type, and soil reflectance class. A final r was calculated
for each index using the entire ground reference dataset as a
whole. For the broad-band indices, the DVI most commonly
provided the highest r with vegetation cover measurements.
Except for the DVI, all broad-band indices tested in this
study were ratio-based indices. Huete et al. (1985) deter-
mined that ratio-based indices performed best at vegetation
covers greater than 70%, and that non-ratio -based indices
such as the DVI performed best for lower vegetation covers.
Since no vegetation cover measurements were greater than
70% in this study, the results of Huete et al. (1985) concerning
the better performance of the DVI at lower vegetation covers
were confirmed. In addition, there was no significant
difference in the performance of soil-adjusted indices and
non-soil-adjusted indices in this research.

For the ratio-based, narrow-band indices, index 1 per-
formed the best. This index contrasted the high absorbance
of blue (472 to 490 nm) light to the maximum reflectance of
visible light in the green (514 to 550 nm) region, but the index
calculation surprisingly did not include any reflectance
measurements in the NIR region, a common requirement for
most broad-band indices. From this, it can be speculated that,
because vegetation cover in the field was moderate, the
varying degree of vegetation-scattered NIR radiation re-
flected by the soil negatively affected the performance of the
ratio -based indices requiring NIR reflectance measure-
ments. As a result, the use of an index requiring only the
reflectance of visible light worked better, because the high
absorbance of light by vegetation at these wavelengths
reduced the potential for variable reflection of vegetation-
transmitted radiation by the soil background. For the non-



297Vol. 47(1): 291-299

0

10

20

30

40

50

450 550 650 750 850

Wavelength (nm)

R
ef

le
ct

an
ce

 (
%

)

(a)

-0.05

0

0.05

0.1

0.15

0.2

0.25

F
ir

st
 D

er
iv

at
iv

e 
o

f
R

ef
le

ct
an

ce

450 550 650 750 850

Wavelength (nm)

(b)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

S
ec

o
n

d
 D

er
iv

at
iv

e
o

f R
ef

le
ct

an
ce

450 550 650 750 850

Wavelength (nm)

(c)

Figure 5. (a) Typical reflectance curve in this dataset with its (b) first and
(c) second derivative curves. First and second derivatives were calculated
using Savitzky-Golay smoothing and differentiation with filter windows
of size 9 and 15, respectively.

Table 3. Wavelength ranges over which the derivative curves were
integrated to calculate derivative-based vegetation indices.
Ranges represent the wavelengths whose derivative values

were most highly correlated to vegetation cover.

Wavelength
Range 1

Wavelength
Range 2

Wavelength
Range 3

First derivative 496-520 670-742 - -

Second derivative 514-556 640-694 712-778

ratio -based DVI, the best narrow-band indices were index 3
and index 4, which both included measurements of NIR radi-
ation. This confirmed that the results of Huete et al. (1985),
concerning the better performance of broad-band, non-ra-
tio-based indices at lower vegetation covers, could also be
applied to narrow-band, non-ratio -based indices.

For the derivative indices, the second derivative generally
performed better than the first derivative. This supported
previous results that the second derivative removes more of
the soil background effects than the first derivative (Datt and
Paterson, 2000). However, the best range for calculating a
derivative -based index could not be concluded because the
results between the tested wavelength ranges for the second
derivative were not significantly different. Perhaps a single
index involving a combination of the three wavelength

ranges used in the second derivative analysis should be
developed.

Division of the ground reference dataset according to soil
background provided some interesting results. The most
concrete conclusions could be drawn through the division of
ground reference data according to soil reflectance. In this
case, for all indices, r decreased as soil brightness increased.
Vegetation indices performed better over darker soils be-
cause the dark soil background contributed less strongly to
the overall spectral signal, and the vegetation signal-to-
noise ratio was higher in these areas. In addition, the
narrow-band, ratio-based index 1, which contained no NIR
reflectance measurements, performed the best for both the
light and medium colored soils. This result further supported
the notion that the reflectance of vegetation-scattered NIR
radiation from soil negatively affected the performance of
vegetation indices requiring NIR reflectance measurements.
Furthermore, since the index requiring no NIR reflectance
value performed the best over the light and medium soil
colors, vegetation-transmitted NIR must be reflected more
strongly from brighter soils than darker soils. For the darker
soil color, the narrow-band DVI index 3, which did use NIR
reflectance,  performed the best. This indicated that vegeta-
tion-transmitted NIR radiation was reflected less strongly
from the dark soil. It was concluded that the divisions of the
ground data by soil reflectance provided more meaningful
results than the divisions by soil type, because correlation
results for divisions by soil type seemed to be more dependent
on the sample size of data points in each soil type class.

CONCLUSION
When compared to the r for the best performing broad-

band index, r was increased by an average of 6.3% when
using narrow-band indices and by an average of 4.6% when
using derivative-based indices. However, the best perform-
ing narrow-band or derivative-based indices were not
consistent between datasets, and it is not possible to select a
single index that consistently outperformed other indices.
Instead, several indices were chosen to be adequate perform-
ers. These included the narrow-band, ratio-based index 1
that contrasted blue (472 to 490 nm) light absorbance to green
(514 to 550 nm) light reflectance. In addition, the narrow-
band DVI index 3, which utilized the longer wavelength red
(646 to 676 nm) reflectance and the reflectance associated
with the red edge (700 to 736 nm), performed well. The
second derivative indices also tended to perform well. These
indices measured the curvature in the green (514 to 556 nm)
region, in the longer wavelength red (640 to 694 nm) region,
and in shorter wavelength NIR (712 to 778 nm). Though these
indices performed better than the older broad-band indices
in general, the performance of all indices was shown to vary
based on soil reflectance properties. As soil brightness
increased, a decrease in the ability to measure vegetation
cover using any of the tested vegetation indices was seen. In
addition, the ratio-based, narrow-band indices that
employed blue (472 to 490 nm) and green (514 to 550 nm)
radiation, but no NIR reflectance measurements, performed
better over areas of partial canopy coverage than the
ratio -based, narrow-band indices that did utilize NIR
reflectance.  This indicated that the reflectance of vegetation-
transmitted NIR radiation from soil greatly hindered the
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performance of ratio-based indices. On the other hand, for
the non-ratio -based DVI, NIR reflectance measurements
were required for optimum performance. Finally, the study
showed that further development is necessary to prevent soil
effects from influencing the result of vegetation index
calculations.
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APPENDIX
Results of the vegetation index analysis. Vegetation cover measurements were divided according to sprayer pass, soil type, and soil reflectance for

the calculation of correlation coefficients with indices, and a final correlation was made using the entire ground reference dataset minus
two passes that did not appear in the 0.5-meter imagery. The top coefficients for each dataset are highlighted in boldface.

Sprayer Pass Soil Type Soil Reflectance All
Data1 2 3 4 5 6 7 8 9 10 Dana Drmr Raub Wynt L M D

All
Data

Sample Size 59 61 59 59 60 60 60 61 59 59 438 90 49 20 145 264 223 598

Broad band
    DVI 0.91 0.80 0.75 0.28 0.73 0.83 0.72 0.68 0.67 0.83 0.57 0.85 0.88 0.92 0.41 0.56 0.80 0.59
    RVI 0.73 0.64 0.77 0.22 0.75 0.71 0.66 0.69 0.40 0.63 0.61 0.77 0.75 0.92 0.46 0.59 0.70 0.57
    NDVI 0.73 0.66 0.76 0.20 0.73 0.72 0.67 0.71 0.39 0.62 0.62 0.77 0.75 0.93 0.46 0.60 0.70 0.56
    SAVI 0.73 0.66 0.76 0.20 0.73 0.72 0.67 0.71 0.39 0.62 0.62 0.77 0.75 0.93 0.46 0.60 0.70 0.56
    MSAVI 0.73 0.66 0.76 0.20 0.73 0.73 0.67 0.72 0.38 0.62 0.62 0.77 0.75 0.93 0.47 0.60 0.69 0.55
    OSAVI 0.73 0.66 0.76 0.20 0.73 0.72 0.67 0.71 0.39 0.62 0.62 0.77 0.75 0.93 0.46 0.60 0.70 0.56

Narrow band
    DVI index 1 0.89 0.62 0.48 0.12 0.11 0.49 0.68 0.78 0.42 0.26 0.44 0.86 0.65 0.66 0.41 0.51 0.80 0.47
    RVI index 1 0.81 0.74 0.82 0.29 0.75 0.78 0.78 0.85 0.78 0.89 0.69 0.84 0.90 0.89 0.53 0.68 0.78 0.59
    NDVI index 1 0.82 0.75 0.82 0.29 0.75 0.78 0.79 0.85 0.78 0.89 0.69 0.84 0.90 0.89 0.53 0.68 0.77 0.59
    SAVI index 1 0.82 0.75 0.82 0.29 0.74 0.78 0.79 0.85 0.78 0.89 0.70 0.84 0.91 0.89 0.53 0.69 0.78 0.59
    MSAVI index 1 0.83 0.75 0.82 0.29 0.74 0.78 0.79 0.85 0.78 0.89 0.70 0.84 0.91 0.89 0.53 0.69 0.78 0.59
    OSAVI index 1 0.82 0.75 0.82 0.29 0.75 0.78 0.79 0.85 0.78 0.89 0.70 0.84 0.90 0.89 0.53 0.68 0.77 0.59

    DVI index 2 0.69 0.43 0.77 0.20 0.62 0.78 0.54 0.61 0.42 0.73 0.61 0.78 0.77 0.90 0.51 0.59 0.70 0.59
    RVI index 2 0.82 0.38 0.78 0.24 0.52 0.80 0.55 0.53 0.65 0.86 0.57 0.81 0.86 0.84 0.49 0.56 0.76 0.61
    NDVI index 2 0.82 0.38 0.78 0.24 0.52 0.80 0.56 0.53 0.65 0.86 0.57 0.81 0.86 0.84 0.49 0.56 0.76 0.61
    SAVI index 2 0.82 0.38 0.78 0.24 0.53 0.80 0.56 0.53 0.65 0.86 0.57 0.81 0.86 0.84 0.49 0.56 0.76 0.61
    MSAVI index 2 0.82 0.38 0.78 0.23 0.53 0.80 0.56 0.54 0.64 0.86 0.57 0.81 0.86 0.85 0.49 0.56 0.76 0.61
    OSAVI index 2 0.82 0.38 0.78 0.24 0.52 0.80 0.56 0.53 0.65 0.86 0.57 0.81 0.86 0.84 0.49 0.56 0.76 0.61

    DVI index 3 0.91 0.78 0.79 0.29 0.74 0.85 0.73 0.69 0.67 0.83 0.64 0.85 0.89 0.92 0.50 0.62 0.84 0.62
    RVI index 3 0.75 0.64 0.79 0.24 0.76 0.74 0.68 0.69 0.43 0.64 0.64 0.79 0.78 0.91 0.52 0.60 0.71 0.57
    NDVI index 3 0.75 0.66 0.79 0.23 0.75 0.75 0.69 0.71 0.41 0.63 0.64 0.79 0.78 0.92 0.52 0.60 0.70 0.56
    SAVI index 3 0.76 0.66 0.79 0.23 0.75 0.75 0.69 0.71 0.42 0.64 0.64 0.79 0.78 0.92 0.52 0.61 0.70 0.56
    MSAVI index 3 0.76 0.67 0.79 0.22 0.74 0.76 0.69 0.72 0.41 0.63 0.65 0.79 0.78 0.92 0.52 0.61 0.70 0.55
    OSAVI index 3 0.76 0.66 0.79 0.23 0.75 0.75 0.69 0.71 0.41 0.63 0.64 0.79 0.78 0.92 0.52 0.60 0.70 0.56

    DVI index 4 0.91 0.79 0.75 0.27 0.73 0.84 0.72 0.68 0.67 0.83 0.58 0.85 0.88 0.92 0.42 0.56 0.81 0.59
    RVI index 4 0.74 0.64 0.77 0.22 0.75 0.71 0.67 0.69 0.41 0.64 0.62 0.77 0.76 0.92 0.47 0.59 0.71 0.57
    NDVI index 4 0.74 0.66 0.76 0.21 0.74 0.73 0.67 0.71 0.40 0.63 0.62 0.78 0.75 0.92 0.47 0.60 0.70 0.56
    SAVI index 4 0.74 0.66 0.77 0.21 0.74 0.73 0.67 0.71 0.40 0.63 0.62 0.78 0.76 0.92 0.47 0.60 0.70 0.56
    MSAVI index 4 0.74 0.66 0.76 0.20 0.73 0.73 0.67 0.71 0.39 0.62 0.62 0.78 0.76 0.93 0.47 0.61 0.70 0.56
    OSAVI index 4 0.74 0.66 0.76 0.21 0.74 0.73 0.67 0.71 0.40 0.63 0.62 0.78 0.75 0.92 0.47 0.60 0.70 0.56

Derivatives
    1st 496-520 0.90 0.69 0.58 0.20 0.24 0.55 0.70 0.78 0.48 0.34 0.50 0.87 0.70 -0.51 0.45 0.55 0.82 0.52
    1st 670-742 0.90 0.78 0.77 0.30 0.75 0.84 0.73 0.68 0.65 0.82 0.62 0.85 0.88 0.92 0.46 0.60 0.82 0.61
    2nd 514-556 -0.90 -0.75 -0.80 -0.29 -0.63 -0.86 -0.72 -0.71 -0.79 -0.88 -0.62 -0.89 -0.90 -0.87 -0.48 -0.62 -0.82 -0.62
    2nd 640-694 0.90 0.75 0.80 0.29 0.74 0.85 0.72 0.68 0.64 0.82 0.65 0.85 0.88 0.92 0.51 0.63 0.83 0.62
    2nd 712-778 -0.89 -0.74 -0.79 -0.31 -0.77 -0.82 -0.74 -0.69 -0.59 -0.79 -0.65 -0.84 -0.85 -0.91 -0.52 -0.62 -0.81 -0.61
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