8 research outputs found
Optically Targeted Search for Gravitational Waves Emitted by Core-Collapse Supernovae During the First and Second Observing Runs ff Advanced LIGO and Advanced Virgo
We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10−4 M⊙c2 and 1.28×10−1 M⊙c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data
Recommended from our members
A gravitational-wave standard siren measurement of the Hubble constant.
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision
Multi-messenger Observations of a Binary Neutron Star Merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg at a luminosity distance of Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position 9 and 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Multi-messenger Observations of a Binary Neutron Star Merger
On 2017 August 17 a binary neutron star coalescence candidate (later
designated GW170817) with merger time 12:41:04 UTC was observed through
gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray
burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to
the merger time. From the gravitational-wave signal, the source was
initially localized to a sky region of 31 deg2 at a
luminosity distance of {40}-8+8 Mpc and with
component masses consistent with neutron stars. The component masses
were later measured to be in the range 0.86 to 2.26 {M}ȯ
. An extensive observing campaign was launched across the
electromagnetic spectrum leading to the discovery of a bright optical
transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC
4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the
One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
optical transient was independently detected by multiple teams within an
hour. Subsequent observations targeted the object and its environment.
Early ultraviolet observations revealed a blue transient that faded
within 48 hours. Optical and infrared observations showed a redward
evolution over ∼10 days. Following early non-detections, X-ray and
radio emission were discovered at the transient’s position ∼ 9
and ∼ 16 days, respectively, after the merger. Both the X-ray and
radio emission likely arise from a physical process that is distinct
from the one that generates the UV/optical/near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with
the source were found in follow-up searches. These observations support
the hypothesis that GW170817 was produced by the merger of two neutron
stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and
a kilonova/macronova powered by the radioactive decay of r-process
nuclei synthesized in the ejecta.</p
Recommended from our members
A gravitational-wave standard siren measurement of the Hubble constant.
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision
A gravitational-wave standard siren measurement of the Hubble constant
On 17 August 2017, the Advanced LIGO(1) and Virgo(2) detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system(3). Less than two seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source(4-6). This sky region was subsequently observed by optical astronomy facilities(7), resulting in the identification(8-13) of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ''multi-messenger'' astronomical observation. Such observations enable GW170817 to be used as a ''standard siren''(14-18) (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ''distance ladder''(19): the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements(20,21), while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision