60 research outputs found

    Temporal variability in composition and fluxes of Yellow River particulate organic matter

    Get PDF
    This study examines temporal variations of the abundance and carbon isotopic characteristics of particulate organic carbon (POC) and specific-source compounds in the context of hydrological variability in the Yellow River. The content and bulk carbon isotopic characteristics (13C and 14C) of POC were relatively uniform over the hydrologic (seasonal) cycle. We attribute these temporally invariant geochemical characteristics to the dominant contribution of loess material to the suspended particulate matter (SPM). In contrast, molecular-level signals revealed that hydrologic conditions exert a significant influence on the proportional contributions of petrogenic and especially fresh plant-derived OC, while pre-aged soil OC is mobilized via deeper erosion processes (e.g., gully erosion, mudslides) and is independent of hydrodynamics and surface runoff. A coupled biomarker-isotope mixing model was applied to estimate the time-varying supply of contemporary/modern biomass, pre-aged soil, and fossil OC components to Chinese marginal seas from the Yellow River. We found that natural (e.g., precipitation) and human-induced (e.g., water and sediment regulation) variations in hydrological regime strongly influence the flux with the magnitude of the corresponding annual fluxes of POC ranging between 0.343 ± 0.122 Mt yr−1 and 0.581 ± 0.213 Mt yr−1, but less strongly infleunce proportions of the different OC constituents. Inter-annual differences in pre-aged soil and fossil OC fluxes imply that extreme climate events (e.g., floods) modulate the exhumation and export of old carbon to the ocean, but the OC homogeneity in the pre-aged mineral soil-dominated watersheds facilitates robust predictions in terms of OC transport dynamics in the past (sediment cores) and in the future

    Patterns of adverse childhood experiences and suicidal behaviors in adolescents: A four-province study in China

    Get PDF
    This is an accepted manuscript of a paper published by Elsevier on 23/02/2021, available online at: https://doi.org/10.1016/j.jad.2021.02.045 The accepted manuscript of the publication may differ from the final published version.Background:: Adverse childhood experiences (ACEs) are associated with increased suicidal behaviors in adolescents and most research has been restricted to certain types of or cumulative exposure to ACEs. Few studies have examined the association between patterns of ACEs and suicidal behaviors. Objective:: To identify the contributions of type and pattern of exposure to ACEs to suicidal behaviors and their gender differences among middle school students in China. Methods:: A school-based health survey was conducted in four provinces in China between 2017 and 2018. 14 500 students aged 10–20 years completed standard questionnaires, to record details of ACEs, suicide ideation, suicide plan, and suicide attempt. Results:: Latent class analysis indicated four distinct patterns of ACEs exposure: high ACEs (6.3%), high abuse and neglect (21.4%), high neglect (45.5%), and low ACEs (26.8%). Logistic analyses showed that, compared with low ACEs, the high ACEs were more likely to report suicidal behaviors. No gender differences were found in the independent effects of ACEs type or pattern on suicidal behaviors, except for the emotional neglect associated with suicidal behaviors in girls than boys. Limitations:: The study was cross-sectional and used self-reported questionnaires. Thus, it is difficult to establish a causal relationship between patterns of ACEs and suicidal behaviors. Conclusion:: Our findings addressed the need for a comprehensive consideration of ACEs in preventive healthcare work to identify children exposed to the most problematic ACE patterns. The study provided the evidence of targeted intervention to preempt the emergence of suicide behavior in at-risk students in adolescents.Funding for the project was provided by National Natural Science Foundation of China (82073576 & 81773453).Published versio

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    SIMULATION OF URBAN RAIL VEHICLE CRASH AND FACTORS INFLUNCING ANTI-CLIMBING ABILITY OF ITS ANTI-CLIMBER

    No full text
    By use of the finite element software Hypermesh and LS-DYNA,the processes were respectively simulated of urban rail vehicle head car,with and without anti-climbing energy absorption device,impacting the fixed rigid wall face to face at the speed of 12.25 km / h and 18 km / h.Based on the obtained data,the crashworthiness of urban rail vehicle head-car body and performance of its energy absorption device were evaluated.Using the response surface methodology,the factors influencing anticlimbing ability of anti-climber were also studied.The results show that,when the crash speed is respectively at 12.25 km / h and18 km / h,the energy absorption device would absorb impact energy before car body structure by plastic deformation,protecting the car body without and with only a little plastic deformation.In addition,when the total height and tooth thickness of anti-climber are fixed,its anti-climbing ability would decrease as the tooth height and angle increases,and the tooth height has more influence than the angle

    Temporal Variability of Source-Specific Solvent-Extractable Organic Compounds in Coastal Aerosols over Xiamen, China

    No full text
    This study describes an analysis of ambient aerosols in a southeastern coastal city of China (Xiamen) in order to assess the temporal variability in the concentrations and sources of organic aerosols (OA). Molecular-level measurements based on a series of solvent extractable lipid compounds reveal inherent heterogeneity in OA, in which the concentration and relative contribution of at least three distinct components (terrestrial plant wax derived, marine/microbial and fossil fuel derived organic matter (OM)) exhibited distinct and systematic temporal variability. Plant wax lipids and associated terrestrial OM are influenced by seasonal variability in plant growth; marine/microbial lipids and associated marine OM are modulated by sea spill and temperature change, whereas fossil fuel derived OM reflects the anthropogenic utilization of fossil fuels originated from petroleum-derived sources and its temporal variation is strongly controlled by meteorological conditions (e.g., the thermal inversion layer), which is analogous to other air organic pollutions. A comparative study among different coastal cities was applied to estimate the supply of different sources of OM to ambient aerosols in different regions, where it was found that biogenic OM in aerosols over Xiamen was much lower than that of other cities; however, petroleum-derived OM exhibited a high level of contribution with a higher concentration of unresolved complex matters (UCM) and higher a ratio between UCM and resolved alkanes (UCM/R)

    Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    No full text
    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (−23.8 to −24.2‰), and old radiocarbon ages (4000–4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500–1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53–57%) is substantially pre-aged (1510–1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of the remaining POC, between 10 and 31% is fossil in origin (>26 000 yr), resulting from the physical erosion of ancient sedimentary rock and input of fossil fuel residues from anthropogenic activity, and 16–33% is modern carbon derived from terrestrial and aquatic productivity. These findings have implications both regarding the provenance and vintage of organic matter signatures emanating from the Yellow River basin and similar catchments containing extensive paleosol sequences, as well as for the reactivity and fate of this POC upon supply to adjacent marginal seas

    Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments

    No full text
    Marginal seas are estimated to account for up to 90% of organic carbon (OC) burial in marine sediments, and thus play an important role in global carbon cycle. However, comprehensive assessments of carbon budgets for marginal sea systems are challenging due to their inherent complexity, with spatial and temporal variability in carbon inputs and dispersal processes. We examine the Bohai Sea and Yellow Sea (BS–YS) in order to further our understanding of sedimentary OC delivery, translocation and accumulation in a shallow marginal sea system. Bulk properties and the content and isotopic compositions (Δ14C, δ13C) of source-specific plant wax n-alkyl lipid biomarkers were determined for a suite of surficial sediment samples. Variable δ13C values (−25.1‰ to −28.5‰) and contemporary radiocarbon ages of short-chain n-fatty acids (FAs; C16, C18) reflect modern autochthonous marine and/or fresh terrestrial plant input. In contrast, extremely depleted Δ14C values (−932‰ to −979‰) of short-chain n-alkanes (C16, C18) suggest a predominant input from sedimentary rocks (petrogenic OC) or petroleum. Abundance-weighted average δ13C and Δ14C values of long-chain leaf wax lipids (C26+28+30n-FAs, C24+26+28n-alkanols, C27+29+31n-alkanes) are −29.1 ± 1.1‰ to −30.2 ± 0.3‰, and −286 ± 150‰ to −442 ± 119‰, respectively, illustrating that terrestrial OC delivery is dominated by pre-aged (∼3000–5000 14C yrs) C3 vegetation sources. A coupled carbon-isotopic mixing model, based on the bulk and compound-specific biomarker δ13C and Δ14C values, is used to partition the BS–YS sedimentary OC into three components that reflect both origins and transport processes. For all sampling sites, 31–64% is modern/contemporary OC, 24–49% is pre-aged terrestrial OC, and 7–26% is fossil OC, the latter likely derived from both physical erosion of ancient sedimentary rocks and fossil fuel sources. Pre-aged soil OC is most prominent in front of the modern and old Huanghe (Yellow River) delta (48% and 49%), and fossil OC is most significant north of the old Huanghe mouth (26%). Significant pre-aged soil contributions (33%) are also evident for sites further offshore, where transport and deposition of eolian dust supply may be important. For the three major deposition areas of the BS–YS system (Bohai Basin, sub-aqueous Huanghe delta and central south YS basin), we estimate that about 3.02 Mt/yr of refractory, plant-derived pre-aged soil OC and 0.98 Mt/yr of 14C-depleted fossil OC accumulates in surface sediments, corresponding to 35% and 11% of sediment TOC, respectively. Compared with estimates for fluxes from corresponding sources, the burial efficiency is close to 100% for pre-aged soil OC and 70% for fossil OC, implying efficient OC burial in delta and shelf environments. Re-burial of these two pools of terrigenous OC only affects carbon cycling on millennial and longer timescales respectively, and exerts little influence on the modern carbon cycle (<100 yr). Carbon isotopic compositions of source specific biomarkers are a useful tool not only for constraining OC sources and transport vectors, but also for delineating their impact on the contemporary carbon cycling in marginal sea systems

    Silylation of clay mineral surfaces

    No full text

    microRNA-17-5p Modulates Bacille Calmette-Guerin Growth in RAW264.7 Cells by Targeting ULK1.

    No full text
    To explore the potential roles of miRNAs in controlling the survival of mycobacteria in macrophages, miR-17-5p in the regulation of Bacillus Calmette-Guérin(BCG)growth in the macrophage RAW264.7 cells was interrogated. Our results reveal that an infection of BCG shows a time-dependent up-regulation of miR-17-5p in RAW264.7 cells in early phase; importantly, excessive expression of miR-17-5p in these cells exhibits an increased propagation of intracellular BCG. Mechanistically, the Unc-51 like autophagy activating kinase 1 (ULK1), an initial molecular of autophagy are identified as novel target of miR-17-5p, the miR-17-5p is capable of targeting down-regulating the expression of ULK1 protein. In addition, an overexpression of miR-17-5p in RAW264.7 cells is correlated with repression of ULK1 and the autophagosome related proteins LC3I/II. These results imply that miR-17-5p may be able to arrest the maturation of mycobacterial phagosomes in part by targeting ULK1, subsequently reduces the ability of host cells to kill intracellular BCG
    corecore