332 research outputs found
The Hydrogen–Deuterium Exchange at α-Carbon Atom in N,N,N-Trialkylglycine Residue: ESI-MS Studies
Derivatization of peptides as quaternary ammonium salts (QAS) is a known method for sensitive detection by electrospray ionization tandem mass spectrometry. Hydrogens at α-carbon atom in N,N,N-trialkylglycine residue can be easily exchanged by deuterons. The exchange reaction is base-catalyzed and is dramatically slow at lower pH. Introduced deuterons are stable in acidic aqueous solution and are not back-exchanged during LC-MS analysis. Increased ionization efficiency, provided by the fixed positive charge on QAS group, as well as the deuterium labeling, enables the analysis of trace amounts of peptides
Hydroxypyridinones with enhanced iron chelating properties. Synthesis, characterization and in vivo tests of 5-hydroxy-2-(hydroxymethyl)pyridine-4(1H)-one
The synthesis of 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one (P1) is presented, together with the evaluation of its coordination ability towards Fe3+, studied by a combination of chemical, computational, and animal approaches. The use of complementary analytical techniques has allowed us to give evidence of the tautomeric changes of P1 as a function of pH, and to determine their influence on the coordinating ability of P1 towards Fe3+. The pFe3+ value 22.0 of P1–iron complexes is noticeably higher than that of deferiprone (20.6), one of the three clinical chelating agents in therapeutic use for iron overload diseases. This is due on one side to the tautomeric change to the catechol form, and on the other to the lower protonation constant of the OH group. Bio-distribution studies on mice allowed us to confirm in vivo the efficacy of P1. Furthermore the coordinating ability toward Al3+, Cu2+ and Zn2+ has been studied to evalu- ate the possible use of P1 against a second toxic metal ion (Al3+), and to envisage its potential influence on the homeostatic equilibria of essential metal ions. The chelating ability of P1 toward these ions, not higher than that of the corresponding deferiprone, contributes to render P1 a more selective iron chelato
Cloning and heterologous expression of bovine pyroglutamyl peptidase type-1 in Escherichia coli : purification , biochemical and kinetic characterisation
We describe the cloning, expression and purification of the bovine XM866409 form of pyroglutamyl-aminopeptidase I. The amino acid sequence, deduced from the nucleotide sequence, revealed that it consists of 209 amino acid residues and showed to have 98% homology with the human AJ278828 form of the enzyme. Three amino acid residues at positions 81, 205 and 208 were found to vary among the two sequences. The bovine enzyme was expressed in XL10-gold Esherichia coli cells. Immobilizied Ni-ion affinity chromatography was used to purify the expressed protein resulting in a yield of 3.3mg of PAP1 per litre culture. The purified enzyme had a specific activity of 1700 units/ml. SDS-PAGE produced a single band for bovine PAP1 with a molecular weight of ~23-24 kDa which is in good agreement with previously reported data on PAP1. Kinetic constants Km and Kcat were 59μΜ and 3.5s-1, respectively. It possessed an optimum pH between 9-9.5, a temperature of 37°C and showed an absolute requirement for a thiol-reducing agent (10mM DTT). EDTA didn’t prove to have an effect on enzyme activity. Competitive inhibition was seen with pyroglutamyl peptides pGlu-His-Pro-NH2 (TRH; Ki= 44.1 uM), pGlu-Ala- OH (Ki=141 uM) and pGlu-Val-OH (Ki=652.17)
A multi-targeted approach to suppress tumor-promoting inflammation
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes
Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR) assays for the differential diagnosis of influenza-like illness
<p>Abstract</p> <p>Background</p> <p>Influenza A, including avian influenza, is a major public health threat in developed and developing countries. Rapid and accurate detection is a key component of strategies to contain spread of infection, and the efficient diagnosis of influenza-like-illness is essential to protect health infrastructure in the event of a major influenza outbreak.</p> <p>Methods</p> <p>We developed a multiplexed PCR (MT-PCR) assay for the simultaneous diagnosis of respiratory viruses causing influenza-like illness, including the specific recognition of influenza A haemagglutinin subtypes H1, H3, and H5. We tested several hundred clinical specimens in two diagnostic reference laboratories and compared the results with standard techniques.</p> <p>Results</p> <p>The sensitivity and specificity of these assays was higher than individual assays based on direct antigen detection and standard PCR against a range of control templates and in several hundred clinical specimens. The MT-PCR assays provided differential diagnoses as well as potentially useful quantitation of virus in clinical samples.</p> <p>Conclusions</p> <p>MT-PCR is a potentially powerful tool for the differential diagnosis of influenza-like illness in the clinical diagnostic laboratory.</p
Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors
Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities
Caveolin-1 enhances resveratrol-mediated cytotoxicity and transport in a hepatocellular carcinoma model
<p>Abstract</p> <p>Background</p> <p>Resveratrol (RES), an estrogen analog, is considered as a potential cancer chemo-preventive agent. However, it remains unclear how RES is transported into cells. In this study, we observed that Caveolin-1(CAV1) expression can increase the cytotoxic and pro-apoptotic activity of RES in a dose- and time-dependent manner both <it>in vitro </it>and <it>in vivo </it>in a Hepatocellular Carcinoma animal model.</p> <p>Methods</p> <p>High performance liquid chromatography (HPLC) demonstrated that RES intra-cellular concentration is increased about 2-fold in cells stably expressing CAV1 or CAVM1 (a scaffolding domain (81-101AA)-defective CAV1 mutant) compared to the untransduced human Hepatoblastoma cell line (HepG2) or after transduction with the green fluorescent protein (GFP) control vector. The increased intra-cellular transport of RES was abolished in cells stably expressing CAVM2 (a cholesterol shuttle domain (143-156AA)-defective CAV1 mutant) or CAVRNAi. In order to further characterize CAV1-dependent RES transport, we synthesized RES-dansyl chloride derivatives as fluorescent probes to visualize the transport process, which demonstrated a distribution consistent with that of CAV1 in HepG2 cells.</p> <p>Results</p> <p>In addition, RES endocytosis was not mediated by estrogen receptor (ER) α and β, as suggested by lack of competitive inhibition by estrogen or Tamoxifen. Pathway analysis showed that RES can up-regulate the expression of endogenous CAV1; this activates further the MAPK pathway and caspase-3 expression.</p> <p>Discussion</p> <p>This study provides novel insights about the role played by CAV1 in modulating cellular sensitivity to RES through enhancement of its internalization and trafficking.</p
Intranasal Delivery of Influenza Subunit Vaccine Formulated with GEM Particles as an Adjuvant
Nasal administration of influenza vaccine has the potential to facilitate influenza control and prevention. However, when administered intranasally (i.n.), commercially available inactivated vaccines only generate systemic and mucosal immune responses if strong adjuvants are used, which are often associated with safety problems. We describe the successful use of a safe adjuvant Gram-positive enhancer matrix (GEM) particles derived from the food-grade bacterium Lactococcus lactis for i.n. vaccination with subunit influenza vaccine in mice. It is shown that simple admixing of the vaccine with the GEM particles results in a strongly enhanced immune response. Already after one booster, the i.n. delivered GEM subunit vaccine resulted in hemagglutination inhibition titers in serum at a level equal to the conventional intramuscular (i.m.) route. Moreover, i.n. immunization with GEM subunit vaccine elicited superior mucosal and Th1 skewed immune responses compared to those induced by i.m. and i.n. administered subunit vaccine alone. In conclusion, GEM particles act as a potent adjuvant for i.n. influenza immunization
Reconstruction of metabolic pathways for the cattle genome
<p>Abstract</p> <p>Background</p> <p>Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement.</p> <p>Results</p> <p>An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly.</p> <p>Conclusion</p> <p>CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.</p
- …