543 research outputs found

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    SN1987A and the Status of Oscillation Solutions to the Solar Neutrino Problem (including an appendix discussing the NC and day/night data from SNO)

    Get PDF
    We study neutrino oscillations and the level-crossing probability PLZ in power-law potential profiles A(r)\propto r^n. We give local and global adiabaticity conditions valid for all mixing angles theta and discuss different representations for PLZ. For the 1/r^3 profile typical of supernova envelopes we compare our analytical to numerical results and to earlier approximations used in the literature. We then perform a combined likelihood analysis of the observed SN1987A neutrino signal and of the latest solar neutrino data, including the recent SNO CC measurement. We find that, unless all relevant supernova parameters (released binding energy, \bar\nu_e and \bar\nu_{\mu,\tau} temperatures) are near their lowest values found in simulations, the status of large mixing type solutions deteriorates considerably compared to fits using only solar data. This is sufficient to rule out the vacuum-type solutions for most reasonable choices of astrophysics parameters. The LOW solution may still be acceptable, but becomes worse than the SMA-MSW solution which may, in some cases, be the best combined solution. On the other hand the LMA-MSW solution can easily survive as the best overall solution, although its size is generally reduced when compared to fits to the solar data only.Comment: 31 pages, 32 eps figures; 5 pages, 5 eps figures addendum in v2, discussing the recent SNO NC data and changes in SN paramete

    Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data

    Get PDF
    Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∌60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≀-0.5 km3/y) and increasing (≄0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∌43 km3/y, whereas most models estimate decreasing trends (-71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∌71-82 km3/y) but negative for models (-450 to -12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated

    De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis.

    Get PDF
    We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk

    Consideration of culture is vital if we are to achieve the Sustainable Development Goals

    Get PDF
    Integrating the social and natural sciences to effectively tackle the intertwined challenges represented by the Sustainable Development Goals (SDGs) has been advocated for years. However, the practice is challenging, especially with respect to the beliefs, morals, and practices of individuals and groups or, more succinctly put, culture, which, despite attracting growing awareness, remains understated in sustainability. Here, we examine how and to what extent cultural values are linked to the achievement of the SDGs. Synthesizing knowledge from more than 300 publications, we show that cultural traits are linked to the achievement of all 17 SDGs and 79% of SDG targets. Further, empirical understanding obtained from a panel data analysis highlights that cultural values explain as much as 26% of the variations in the SDG achievements, yet the links are strikingly divergent across cultural traits and indicators. Our findings imply the need to consider more cultural contexts and nuances in sustainability science communications and policy design and to develop new cross-disciplinary solutions to sustainability challenges.FWN – Publicaties zonder aanstelling Universiteit Leide

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    First-principles study of the effect of charge on the stability of a diamond nanocluster surface

    Get PDF
    Effects of net charge on the stability of the diamond nanocluster are investigated using the first-principles pseudopotential method with the local density approximation. We find that the charged nanocluster favors the diamond phase over the reconstruction into a fullerene-like structure. Occupying the dangling bond orbitals in the outermost surface, the excess charge can stabilize the bare diamond surface and destabilize the C-H bond on the hydrogenated surface. In combination with recent experimental results, our calculations suggest that negative charging could promote the nucleation and further growth of low-pressure diamond.open8

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore