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Abstract

We study neutrino oscillations and the level-crossing probability PLSZ in

power-law potential profiles A(r) ∝ rn. We give local and global adia-

baticity conditions valid for all mixing angles ϑ and discuss different rep-

resentations for PLSZ. For the 1/r3 profile typical of supernova envelopes

we compare our analytical to numerical results and to earlier approxi-

mations used in the literature. We then perform a combined likelihood

analysis of the observed SN 1987A neutrino signal and of the latest solar

neutrino data, including the recent SNO CC measurement. We find that,

unless all relevant supernova parameters (released binding energy, ν̄e and

ν̄µ,τ temperatures) are near their lowest values found in simulations, the

status of large mixing type solutions deteriorates considerably compared

to fits using only solar data. This is sufficient to rule out the vacuum-

type solutions for most reasonable choices of astrophysics parameters.

The LOW solution may still be acceptable, but becomes worse than the

SMA–MSW solution which may, in some cases, be the best combined

solution. On the other hand the LMA–MSW solution can easily survive

as the best overall solution, although its size is generally reduced when

compared to fits to the solar data only.
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I. INTRODUCTION

The detection of astrophysical neutrinos has played a major rôle in the still on-

going process of establishing neutrino masses and mixing [1]. The propagation of these

neutrinos from their source to the detector can be influenced by matter effects as it was

pointed out by Wolfenstein [2]. In particular, Mikheev and Smirnov [3] showed that the

flavour of neutrinos produced in the core of the sun or a supernova can be efficiently

converted into a different one even for small mixing angles ϑ via “resonant” neutrino

oscillations (MSW effect). In the limit that the density inside a star varies much

slower than the typical distance characterizing flavour oscillations, the instantaneous

matter states of the neutrino propagating towards the vacuum change adiabatically

their flavour composition which can be reversed completely even for small ϑ.

The analytical study of non-adiabatic neutrino oscillations started soon after the

discovery of the MSW effect. The leading non-adiabatic effects were calculated for

a linear potential profile in Ref. [4] as a Landau-Stückelberg-Zener (LSZ) crossing

probability [5],

PLSZ = exp
(
−γπ

2

)
. (1)

The adiabaticity parameter for a linear profile is

γ =
|m2

2 −m2
1| sin2 2ϑ

2E cos 2ϑ |d lnA/dx|0 , (2)

where E is the energy, mi denotes the masses, and ϑ the vacuum mixing angle of the

two (active) neutrinos. Furthermore, A = 2EV = 2
√

2GFNeE is the induced mass

squared for the electron neutrino. The parameter γ has to be evaluated at the so-

called resonance point, i.e. the point where the mixing angle in matter is ϑm = π/4.

For a linear profile, adiabaticity is maximally violated at this point. Therefore, the

probability that a neutrino jumps from one branch of the dispersion relation to the

other one is indeed maximal at the resonance. Since the condition ϑm = π/4 can be

fulfilled only for a normal mass hierarchy in the case of neutrinos and for an inverted

hierarchy in the case of anti-neutrinos, Eq. (2) allows the calculation of PLSZ only in

half of the parameter space of neutrino mixing.

Later, Kuo and Pantaleone [6] derived the LSZ crossing probability for an arbitrary

power-law like rn potential profile. This type of profile does not only contain the

case n ≈ −3 typical for supernova envelopes, but also the exponential profile of the

sun in the limit n → ±∞. Moreover, it allows discussing which features of neutrino

oscillations are generic and which ones are specific for, e.g., the linear profile n = 1

usually discussed. Kuo and Pantaleone found that also for arbitrary power-law like

potential profiles the dependence on the neutrino masses and energies can be factored

out, while the effect of a non-linear profile can be encoded into a correction function

Fn,
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PLSZ = exp
(
−πγn

2
Fn(ϑ)

)
, (3)

which only depends on ϑ and n. The “adiabaticity” parameter γn has to be evaluated

still at the resonance although, as we will show, it does not coincide with the point

of maximal violation of adiabaticity (PMVA) for n 6= 1. An unsatisfactory feature

of Eq. (3) is its restricted range of applicability: As in the case of a linear profile,

the calculation of PLSZ with Eq. (3) requires the validity of the resonance condition

ϑm = π/4. Several other authors have also considered non-adiabatic effects in neutrino

oscillations, partially for arbitrary potential profiles, but their results either do not allow

simple numerical evaluation or have also a restricted range of validity [7]. Therefore,

it has not been possible to calculate, e.g., the survival probability of supernova anti-

neutrinos in the quasi-adiabatic regime without solving numerically their Schrödinger

equation.

The purpose of this work is twofold1. First, we clarify the physical significance of

the resonance point compared to the point where adiabaticity is maximally violated

locally : we find that the crossing probability has its maximum at the PMVA and not

at ϑm = π/4. Then we show explicitly that the product γnFn can be evaluated at an

arbitrary point. We conclude that the “resonance” point has in general no particular

physical meaning: it does not necessarily describe the point of maximal violation of

adiabaticity nor is it necessary to calculate the adiabaticity parameter at the resonance.

We provide a criterion that measures the global cumulative non-adiabatic effects along

the neutrino trajectory and gives an estimate of the border between the adiabatic and

non-adiabatic regions for a power-law profile. Moreover, we obtain an accurate formula

for PLSZ which is valid for all ϑ and convenient for numerical evaluation.

Second, we apply this formula to neutrino oscillations in supernova (SN) envelopes

and in particular to the neutrino signal of SN 1987A. Performing a combined likelihood

analysis of the observed neutrino signal of SN 1987A and the updated global set of

solar neutrino data including the recent SNO CC measurement [9], we find that the

supernova data offer additional discriminating power between the different solutions.

We find that, unless all relevant supernova parameters (released binding energy, ν̄e

and ν̄µ,τ temperatures) are near their lowest values found in simulations, the status

of the large mixing solutions to the solar neutrino problem deteriorates considerably

compared to fits using only solar data. This is sufficient to rule out the vacuum-type

solutions for most reasonable choices of astrophysics parameters. The LOW solution

may still be acceptable, but becomes worse than the SMA–MSW solution. In contrast

the LMA–MSW solution can easily survive as the best overall solution, although its

size is generally reduced when compared to fits to the solar data only. In the analysis of

1Some of the results of this work have been already briefly presented in Ref. [8].
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the solar neutrino data which we adopt in the present paper, the SMA–MSW solution

is absent at 3 standard deviations if solar data only are included but may reappear once

SN 1987A data are included and, may, in some cases, be the best combined solution.

II. NEUTRINO EVOLUTION: RESONANCE AND ADIABATICITY

CONDITIONS, MAXIMAL VIOLATION OF ADIABATICITY

We consider neutrino oscillations in a two flavour scenario and label always the

heavier neutrino mass eigenstate with “2”. Then ∆ is positive and the vacuum mixing

angle ϑ is in the range [0 : π/2]. As starting point for our discussion, we use the

evolution equation for the medium states ψ̃ first given in Ref. [10],

d

dr


 ψ̃1

ψ̃2


 =


 i∆m/(4E) −ϑ′m

ϑ′m −i∆m/(4E)




 ψ̃1

ψ̃2


 . (4)

Here,

∆m =
√

(A−∆ cos 2ϑ)2 + (∆ sin 2ϑ)2 (5)

denotes the difference between the effective mass of the two neutrino states in matter,

ϑm is the mixing angle in matter with

tan 2ϑm =
∆ sin 2ϑ

∆ cos 2ϑ−A
(6)

and ϑ′m = dϑm/dr. Anti-neutrinos feel a potential V with the opposite sign than

neutrinos. This sign change can be compensated by the exchange of ϑ with π/2− ϑ;

thus all formulae derived below for neutrinos become valid for anti-neutrinos after the

substitution ϑ→ π/2− ϑ. Following Ref. [11], we rewrite the evolution equation as

d

dϑm


 ψ̃1

ψ̃2


 =


 i∆m/(4Eϑ

′
m) −1

1 −i∆m/(4Eϑ
′
m)




 ψ̃1

ψ̃2


 (7)

with

ϑ′m =
sin2 2ϑm

2∆ sin 2ϑ

dA

dr
, (8)

∆m

ϑ′m
=

2∆2 sin2 2ϑ

sin3 2ϑm

1

dA/dr
, (9)

and

A =
∆ sin(2ϑm − 2ϑ)

sin 2ϑm
. (10)

The traditional condition for an adiabatic evolution of a neutrino state along a

certain trajectory is that the diagonal entries of the Hamiltonian in Eq. (7) are large
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with respect to the non-diagonal ones, |∆m| � |4Eϑ′m|. This condition measures

indeed how strong adiabaticity is locally violated. Therefore, the PMVA is given by

the minimum of ∆m/ϑ
′
m. Differentiating Eq. (9) for a power law profile, A(r) ∝ rn, we

find the minimum at

cot(2ϑm − 2ϑ) + 2 cot(2ϑm)− 1

n
[cot(2ϑm − 2ϑ)− cot(2ϑm)] = 0 . (11)

For n = 1, the PMVA is at ϑm = π/4 for all ϑ. Thus, in the region where the resonance

point is well-defined, it coincides with it. In the general case, n 6= 1, the PMVA agrees

however only for ϑ = 0 with the resonance point. Finally, we recover the result of

Ref. [11] for an exponential profile in the limit n→ ±∞.

In Fig. 1, we show the survival probability p(r) = |ψ̃2(r)|2 for a neutrino produced

at r = 0 as ν̃2, together with the PMVA predicted by Eq. (11) and the resonance

point for a power law profile A ∝ r−3. The resonance condition predicts a transition in

regions of density lower than that which characterizes the PMVA, until for ϑ = π/4 the

resonance point reaches r = ∞ and the concept of a resonant transition breaks down

completely. If one plots the change of the survival probability, dp(r)/dr = d|ψ̃2(r)|2/dr,
as function of r, cf. Fig. 2, it can be clearly seen that Eq. (11) describes quite accurately

the most probable position of the level crossing, while the resonance condition fails. As

an immediate consequence, we note that in the case that the true potential profile A(r)

is only approximately given by a power-law, its exponent should be determined by the

region around the PMVA, not by the region around the resonance point. Finally, Fig. 2

shows that the crossing probability becomes less and less localized near the PMVA for

larger mixing angles ϑ.

Let us now discuss the condition for the adiabatic evolution of a neutrino state along

a trajectory from the core of a star to the vacuum. While the condition |∆m| � |4Eϑ′m|
indicates whether adiabaticity is locally violated, we need now a global criterion that

measures the cumulative non-adiabatic effects along the trajectory from ϑm ≈ π/2 to

ϑ. For a non-adiabatic evolution of the neutrino state we require that

∣∣∣∣
∫ ϑ

π/2
dϑm ψ̃1

∣∣∣∣ = ε
∣∣∣∣
∫ ϑ

π/2
dϑm

4Eϑ′m
∆m

ψ̃2

∣∣∣∣ (12)

with ε� 1. Then we can use ψ̃1 ≈ cos ϑm, ψ̃2 ≈ sin ϑm and Eq. (9),

∣∣∣∣
∫ ϑ

π/2
dϑm cosϑm

∣∣∣∣ = 2Eε

∆2 sin2(2ϑ)

∣∣∣∣
∫ ϑ

π/2
dϑm sin ϑm sin3 2ϑm

dA

dr

∣∣∣∣ . (13)

We consider first the simple case of an exponential profile, |dA/dr| = A/R0, where

we can solve the ϑm integral of the RHS of Eq. (13) analytically. Then the non-adiabatic

region obeys the following condition

∆

E
= ε

f(ϑ)

(1− sinϑ) sin2(2ϑ)

2

R0

(14)
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with

f(ϑ) =
1

3
sinϑ− 1

10
sin(3ϑ) +

1

42
sin(5ϑ) +

16

35
cos(2ϑ) . (15)

This criterion agrees well with the one derived in a more intuitive way in Ref. [11],

∆

E
= ε′

tan(π/4 + ϑ/2)

2 sinϑ tanϑ

1

R0
, (16)

for ε ≈ 2ε′.

In the case of a power-law like profile, A(r) = 2EV0(r/R0)
n, the border between

the adiabatic and non-adiabatic regions is given by

∆

E
=

{
ε

f(ϑ)

sin2(2ϑ)(1− sin ϑ)

2n(2V0)
1/n

R0

} n
n+1

, (17)

with

f(ϑ) =

∣∣∣∣
∫ ϑ

π/2
dϑm sinϑm [sin(2ϑm)]2+1/n [sin(2ϑm − 2ϑ)]1−1/n

∣∣∣∣ . (18)

In Fig. 3 we compare the different predictions for the borders between the non-adiabatic

and adiabatic regions for solar neutrinos with energy E = 1 MeV with the contours

of constant survival probability (dashed lines) of the neutrino eigenstate ν̃2 obtained

by solving the Schrödinger equation (7). In the solar case, we can approximate the

potential by an exponential profile with the typical solar height scale R0 = R�/10.54.

The difference between our general criterion (14) together with (15) compared to (16)

is negligible for ε′ = ε/2 = 1: both criteria predict very well the borderline of the

adiabatic region. For comparison, the 90, 95, 99 and 99.73% confidence level (C.L.)

contours for the different solutions to the solar neutrino problem from Ref. [9] are also

shown.

In Fig. 4 we show a similar comparison for anti-neutrinos with energy E = 20 MeV

and a profile typical for supernova envelopes, V (r) = 1.5× 10−9 eV (109 cm/r)3. We

now compare the borderlines obtained using our general criterion (17) together with

two different choices for f(ϑ): the solid line is obtained solving numerically (18) for

n = −3, while we used (15) for the dash-dotted line. We find that already for moderate

|n| values the function f(ϑ) depends rather weakly on n so that the expression (15)

obtained for n→ ±∞ can be used as a reasonable approximation already for n = −3.

III. THE CROSSING PROBABILITY IN THE WKB FORMALISM

A. The correction functions Fn

We discuss now in detail the calculation of the leading term to the crossing proba-

bility within the WKB formalism. The semi-classical transition probability PLSZ from
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the neutrino states 1 → 2 under an adiabatic change of the action is mainly deter-

mined by those x values for which E1(x) = E2(x). Using the ultra-relativistic limit

and omitting an overall phase, the WKB formula gives

lnPLSZ = − 1

E
=
∫ x2(A2)

x1(A1)
dx

[
(A−∆C)2 + (∆S)2

]1/2
, (19)

where A2 = ∆(C+iS) = ∆e2iϑ is the branch point of ∆m in the upper complex x plane

and we have also introduced the abbreviations C = cos 2ϑ and S = sin 2ϑ.

We identify the physical coordinate r ∈ [0 :∞] with the positive part of the real x

axis, i.e. we consider a neutrino state produced at small but positive x propagating

to x = ∞. Then, a convenient choice for A1 is to use the real part of A2 for C > 0,

i.e. the “resonance” point A1 = ∆C. However, we stress that this choice has technical

reasons and makes sense only for C > 0: consider for instance the simplest case n = 1.

Then both the integration path chosen and the branch cut are for C < 0 in the half-

plane <(x) < 0. The physical interpretation is therefore that an anti-neutrino state

created at small but negative x propagates to −∞. This case is however equivalent to

a neutrino state propagating with C > 0 in the right half-plane and therefore contains

no new information. Thus, we expect the correction functions Fn obtained with the

integration path from ∆C to ∆e2iϑ to be functions with period π/4 and to be valid

only in the resonant region.

We substitute first A = ∆(B + C),

lnPLSZ = −∆

E
=
∫ iS

0
dB

dx

dB
(B2 + S2)1/2 . (20)

Then we expand the Jacobian for a potential A(x) = A0(x/R0)
n,

f =
dx

dB
=
R0

n

(
∆

A0

)1/n

(B + C)1/n−1 , (21)

into a power series around the arbitrary point B0. Using

1

A

dA

dx

∣∣∣∣∣
B0

=
n

x

∣∣∣∣
B0

=
n

R0

(
A0

∆

)1/n 1

(B0 + C)1/n
, (22)

we obtain

f =

(
1

A

dA

dx

∣∣∣∣∣
B0

)−1 ∞∑
m=0


 1/n− 1

m


 (B − B0)

m

(B0 + C)m+1
. (23)

After expanding the binomial (B − B0)
m, we can solve the integral in Eq. (20) for

each of the terms of (23) separately. We obtain as our final result for general B0 and

C > 0,

lnPLSZ = −πγn(B0)

2
Fn(ϑ,B0) (24)
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with

γn(B0) =
∆S2

2EC |d lnA/dx|B0

(25)

and

Fn(ϑ,B0) =
2C

B0 + C

∞∑
m=0


 1/n− 1

m


( 1

B0 + C

)m

m∑
k=0


 m

2k




 1/2

k + 1


 (−B0)

m−2kS2k . (26)

It is now clear that the choice of the point x0 or B0 where the adiabaticity parameter

γn should be evaluated is totally arbitrary. A change of B0 will always be compensated

by a change in the correction function Fn so that the physical observable PLSZ is

independent of B0, as it should. The choice of the resonance point B0 = 0 is privileged

only by the fact that it results in the simplest analytical expression for Fn in the

resonant region. Indeed, by requiring the invariance of PLSZ against variations of B0,

one can write a differential equation for dFn/dB0 [8]. The solution of such equation

allows to rescale the correction functions obtained for B0 = 0 to arbitrary B0,

Fn(ϑ,B0) =
(

C

B0 + C

)1/n

Fn(ϑ, 0) . (27)

For practical calculations however it is simpler to insert B0 = 0 whenever possible

(resonance case) into Eq. (24) thereby obtaining the well-known result of Ref. [6],

Fn(ϑ, 0) = 2
∞∑

m=0


 1/n− 1

2m




 1/2

m+ 1


 (tan(2ϑ))2m , (28)

valid only for ϑ < π/8. Representing this series as a hypergeometric function,

Fn(ϑ, 0) = 2F1

(
n− 1

2n
,
2n− 1

2n
; 2;− tan2(2ϑ)

)
, (29)

we can use the Euler integral representation [12] of 2F1,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tz)a , (30)

as the analytical continuation for all ϑ ∈ [0 :π/4].

B. The correction functions Gn

In order to avoid the limited regime of validity of the formalism presented in the pre-

vious subsection we will now present a new representation for the crossing probability

which is valid for all ϑ. We start directly from Eq. (19), but use now as integration path
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in the complex x plane the part of a circle of radius ∆ centered at zero and starting from

A1 = ∆ and ending at A2 = ∆e2iϑ namely, the end of the branch cut, see Fig. 5. In

the case of a power-law potential A = A0(r/R0)
n by substituting x = R0(∆/A0)

1/neiϕ

we can factor out the ϑ dependence of PLSZ into functions Gn,

lnPLSZ = −κnGn(ϑ) , (31)

where

κn =
(

∆

E

) (
∆

A0

)1/n

R0 (32)

is independent of ϑ and

Gn(ϑ) =

∣∣∣∣∣ <
∫ 2ϑ/n

0
dϕ eiϕ

[(
einϕ − C

)2
+ S2

]1/2
∣∣∣∣∣ . (33)

The functions Gn are well suited for numerical evaluation and always correspond to a

neutrino state propagating in the physical part of the x plane, x > 0. Therefore, they

have, in contrast to the Fn functions, the period π/2 and are valid for all ϑ.

Finally, we remind the reader that the Landau-Stückelberg-Zener approach is only

valid for small deviations from adiabaticity. Therefore, in order to cover also the non–

adiabatic case, the WKB formula Eq. (3) has to be replaced [6] by

Pc =
exp (−κnGn)− exp (−κnG′n)

1− exp (−κnG′n)
, (34)

where G′n = Gn/ sin2 ϑ for neutrinos and G ′n = Gn/ cos2 ϑ for anti-neutrinos, respectively.

A similar formula holds for the Fn functions, if κnGn is replaced by γFnπ/2.

IV. NEUTRINO OSCILLATIONS IN SUPERNOVA ENVELOPES

A. General discussion

The potential profile A(r) in supernova (SN) envelopes can be approximated by a

power law with n ≈ −3, and V (r) = 1.5 × 10−9 eV (109 cm/r)3 [13]. Since only ν̄e

were detected from SN 1987A and also in the case of a future galactic SN the ν̄e flux

will dominate the observed neutrino signal, an analytical expression for Pc valid in the

non-resonant part of the mixing space is especially useful. In the following, we will

always consider oscillations of anti-neutrinos.

The probability for a ν̄e to arrive at the surface of the Earth can be written as an

incoherent sum of probabilities,

Pēē = P S
ē1P

E
1ē + P S

ē2P
E
2ē = (1− Pc) cos2 ϑ+ Pc sin2 ϑ , (35)
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where P S
ēi denotes the probability that a ν̄e leaves the star as mass eigenstate ν̄i and

PE
iē the probability that ν̄i is detected as ν̄e.

In Fig. 6, we compare the results of a numerical solution of the Schrödinger equa-

tion (7) with the analytical calculation of Pēē using the G−3 and the F−3 functions. The

latter is shown only for its range of applicability, ϑ > π/4. The agreement between

the two methods using the WKB approach is again (for ϑ > π/4) excellent. Generally,

these two methods agree also very well with the results of the numerical solution of the

Schrödinger equation; there are only tiny deviations in the region ∆/(2E) ∼ 10−17 eV.

Next, we discuss the quality of the different approximations for PLSZ which have so

far been used in the literature. The most common one is to use the correct potential

profile, A ∝ r−3, together with F1 = 1 [14]. Since all correction functions Fn go to

1 for small mixing in the resonant region, this approximation is certainly justified for

ϑ → 0 in neutrino and for ϑ → π/2 in anti-neutrino oscillations. The shape of the

MSW triangle which is determined2 by the exponent n is correctly reproduced in this

approximation, as the comparison of the numerical results and the linear approxima-

tion in Fig. 7 confirms. However, this approximation becomes worse for tan2 ϑ <∼ 5

and breaks down for tan2 ϑ < 1. Therefore, it is not applicable in the phenomenologi-

cally most interesting region of maximal or nearly maximal mixing presently indicated

by the solar neutrino data [9,15]. Physically, the failure of the linear approximation

[14] already in the resonant region is understandable by the broadening of the cross-

ing probability profile, cf. Fig. 2. Since for larger mixing the crossing probability is

determined not only by the potential near the expansion point but by a rather large,

extended region, a linear approximation of the potential profile is not good enough.

In order to obtain an approach well-defined for all ϑ another approximation was

employed in Ref. [16]. There, the expression γnFn valid for an exponential profile was

used. The resulting shape of the MSW triangle outside the region of nearly-maximal

mixing is not correctly reproduced because of the wrong profile used, as can be seen

from Fig. 8. The agreement between Pc from the numerical solution of the Schrödinger

equation and that obtained by using the exponential profile is however very good for

tan2 ϑ <∼ 5 and a suitable choice of A0 and R0. Therefore, this approximation is

adequate for the discussion of anti-neutrino oscillations in the whole parameter space

allowed by present solar neutrino experiments. Numerically, we have found the best

agreement between the two approaches for Rexp
0 ≈ 100 × Rpower

0 , where we have fixed

Aexp
0 = Apower

0 . This normalization of the scale factor R0 ensures that both potentials,

A = A0 exp(−r/Rexp
0 ) and A = A0(r/R

power
0 )−3, give rise to the same scale height,

2Note that, according to Eq. (2), the hypotenuse of the MSW triangle should have the slope

n/(n+ 1) in a ln(∆)–ln(tan2 ϑ) plot.
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[d lnA(r)/dr]−1, in the region around the PMVA for the values of ϑ of interest. Figure 8

shows very good agreement between this approximation and the numerical results

except for tan2 ϑ >∼ 3 and ∆/E >∼ 10−10 eV2/MeV.

Reference [6] gave an additional approximation for F−3 which consists of an expan-

sion of the exponential profile in the parameter 1/n,

Fn(ϑ) = (1− tan2 ϑ) {1− 1

n
[ ln(1− tan2 ϑ) + 1

−(1− tan2 ϑ)

tan2 ϑ
ln(1 + tan2 ϑ)] + . . . } . (36)

This approximation agrees indeed very well already for n = −3 with our numerical

results in the resonant region. Only near the limit of its range of applicability, tan2 ϑ =

1, we have found sizeable deviations.

Finally, we have also checked how deviations of the true SN progenitor profile V (r)

from an 1/r3 profile may affect our results for Pēē. Realistic progenitor profiles differ in

two aspects from the simple 1/r3 profile assumed. First, the outer part of the envelope

has an onion like structure, and its chemical composition, Ye(r), and thus also V (r)

changes rather sharply at the boundaries of the various shells. Second, the density drops

faster in the outermost part of the envelope, becoming closer to an exponential decrease.

We have calculated numerically Pēē using profiles for three different progenitor masses

(11, 20 and 30 M�) from Woosely [17] and one by Nomoto [18] for the progenitor of

SN 1987A. We have found that Pēē is well approximated in the non-resonant part by

our analytical results for the 1/r3 profile, independently of the details of the progenitor

profile. In contrast, Pēē depends strongly on the details of the progenitor profile in the

resonant region. In particular, there are rather strong deviations between a 1/r3 profile

and the profiles of Refs. [17,18]. As an example, we compare in Fig. 9 the Pēē calculated

numerically for the 20M� profile of Ref. [17] with the analytical results for our standard

SN profile V (r) = 1.5× 10−9 eV (109 cm/r)3. We conclude that a numerical solution

of the Schrödinger equation (7) should be performed in the resonant region, using a

realistic profile for the particular progenitor star considered. However, a 1/r3 profile

together with the LSZ crossing probability is sufficient for the analysis of anti-neutrino

oscillations in the phenomenologically most interesting region tan2 ϑ <∼ 5.

B. Likelihood analysis of the SN 1987A neutrino signal

In Ref. [16] we performed a likelihood analysis [19] of the neutrino signal of

SN 1987A observed by the Kamiokande II and the IMB experiments [20] using the

expression γnFn valid for an exponential potential profile for PLSZ. In order to describe

the SN 1987A neutrino signal we need the evolution of a typical SN anti-neutrino in

the region of parameters presently indicated by the solar neutrino problem [9]. Most of
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the presently allowed oscillation solutions of the solar neutrino problem (LMA–MSW,

LOW-QVAC, VAC, “just-so”) require large neutrino mixing. The small mixing an-

gle solution, called SMA-MSW, appears in most analyses only at about 99.9% C.L.

The precise value slightly depends on arbitrary details of the statistical analysis, as

can be seen by comparing different global analyses of the solar data. So far, only

the SuperKamiokande collaboration can perform a full analysis of its signal and back-

ground [21]. However, the published data allow to approximate reasonably well the full

SuperKamiokande results so as to be used in global analyses. We have here adopted

the values of the χ2
�(ϑ,∆) grid corresponding to Fig. 6b of Ref. [9].

The description of the anti-neutrino conversion is trivial both in the cases of com-

plete adiabaticity or full non-adiabaticity. In the first case there is, of course no-level

crossing, while in the second the standard vacuum treatment applies. In either case

the exact form of the potential profile used has no effect. As we have seen in Figs. 3

and 4 full adiabaticity or non-adiabaticity occur for an exponential and a power-law

like profile with n = −3 for all solutions to the solar neutrino problem, except for the

case of LOW-QVAC solution. Therefore for the former solutions the main part of the

results and conclusions of Ref. [16] remains unchanged. However, for the LOW-QVAC

a new analysis is in order.

Here we have repeated therefore the likelihood fit of the neutrino signal from

SN 1987A in the tan2 ϑ–∆ plane for a more realistic 1/r3 profile but used otherwise

exactly the same approach as in Ref. [16]. In particular, we work in the framework

of oscillations between two active neutrino flavours. Our 2-flavour approximation is

valid for the case of normal mass hierarchy m3 � m1 ∼ m2 in view of the Chooz

limit on U13. In the alternative inverse mass hierarchy case m1 ∼ m2 � m3, the third

neutrino do not significantly affect supernova oscillations if s2
13 < few × 10−4 because

the “heavy” resonance is non-adiabatic. With the inverted spectrum, larger values of

s13 are already strongly disfavoured by SN 1987A [22].

The ratio of the likelihood functions for different hypotheses measures the degree to

which the experimental data favour one hypothesis over the other. In order to decide

how strong the large mixing solutions are disfavoured with respect to the no-oscillation

case (or to SMA–MSW oscillations, that negligibly affect supernova ν̄e) for a certain

choice of astrophysical parameters {α}. Thus we consider the ratio

Rα(ϑ,∆) =
L(ϑ,∆)

LNO−OSC
(37)

as function of ϑ and ∆. The astrophysical parameters α used are the released binding

energy Eb, the average energy 〈Eν̄e〉 of ν̄e neutrinos, and the average energy 〈Eν̄h
〉 =

τ〈Eν̄e〉 of ν̄µ,τ neutrinos. For a more details see Ref. [16]. We consider mainly two sets

of values for {Eb, 〈Eν̄e〉}: one corresponds to the lowest values found in simulations,

Eb = 1.5× 1053 erg and 〈Eν̄e〉 = 12 MeV, and the second one is with Eb = 3× 1053 erg

and 〈Eν̄e〉 = 14 MeV nearer to average values found.
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In Figs. 10 and 11 we show the likelihood ratio ln(R) as function of tan2 ϑ and ∆

relative to the NO-OSC hypothesis. The contours of constant likelihood shown cor-

respond to ln(R) = −1,−2,−3,−5,−10,−15,−20, unless otherwise indicated. There

are two differences compared to the same plots of Ref. [16]. First, since in Ref. [16]

the scale height R0 of the exponential profile was not optimized to reproduce best

a power-law profile with n = −3, matter effects in the SN envelope became impor-

tant at 10−7-10−8 eV2 while here we find that they already start being important for

few× 10−9 eV2. Second, the slope of the MSW triangle in the dark side tan2 ϑ > 1 has

now the correct value. The changes in the regions favoured by the solar neutrino data

are however marginal.

C. Combined global analysis of solar and SN 1987A neutrino data

In Figs. 10 and 11, we have simply superimposed the C.L. contours obtained by

analyzing solar and SN data separately. Since the two data sets are statistically inde-

pendent and functions of the same two fit parameters, they can be trivially combined,

χ2
TOT(ϑ,∆) = χ2

�(ϑ,∆) + χ2
SN(ϑ,∆) . (38)

We can then obtain new C.L. contours which are defined relative to the minimum of

χ2
TOT. In the following, we will use the χ2

�(ϑ,∆) grid calculated in Ref. [9] for the

solar data and χ2
SN = −2L(ϑ,∆) with L(ϑ,∆) as defined in Ref. [16] for the SN 1987A

data. We consider the astrophysical parameters as known and minimize only the two

parameters ϑ and ∆. Hence, the confidence levels are always calculated with respect

to two fit parameters.

In Figs. 12–16 we show the 90, 95, 99 and 99.73% C.L. contours of the combined fit of

solar and SN 1987A data for different astrophysical parameters. We also show the best-

fit point of the solar neutrino data alone (dot) and the best-fit point of the combined

data set (star). The values chosen in Fig. 12 correspond to a rather representative set

of astrophysical parameters, namely Eb = 3 × 1053 erg and 〈Eν̄e〉 = 14 MeV. In this

case, the impact of the SN 1987A data on the standard solutions to the solar neutrino

problem is rather dramatic: the LOW-QVAC and VAC solutions disappear for all

assumed τ values. We find that they are excluded at 99.98% and 99.99% respectively,

even for τ = 1.4.

Moreover the size of the LMA–MSW solution decreases, with increasing τ . The part

of the LMA–MSW solution which is most stable against the addition of the supernova

data corresponds to the lowest ∆ and tan2 ϑ values, since these are favoured by Earth

matter regeneration effects. On the other hand the SMA–MSW region re-appears

extending, for increasing τ , as a funnel towards the VAC solution along the hypotenuse

of the solar MSW triangle. The combined best-fit point moves from the LMA–MSW
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region for τ = 1.4 to the SMA–MSW solution for τ = 1.7 and 2. Comparing the

C.L. contours for the different solutions to the solar neutrino problem with the border

between the adiabatic and non-adiabatic region, we find that the SMA–MSW solution

lies for anti-neutrinos always in the adiabatic region, while it is in the non-adiabatic

region for neutrinos (dotted line).

In Fig. 13, we have chosen astrophysical parameters corresponding to the lower

limit of the range found in simulations, Eb = 1.5 × 1053 erg and 〈Eν̄e〉 = 12 MeV.

Even in this case, the vacuum type solutions to the solar neutrino problem are severely

disfavored, and exist very marginally only at the 3σ level for τ = 1.4. In contrast, the

LOW solution can still exist at 90% level for the most favorable choice of astrophysical

parameters. Finally the LMA solution remains for all of the above three τ choices

and, most importantly, for such choices of astrophysical parameters the best combined

global fit-point remains within the LMA solution.

In order to analyse the stability of the LMA solution against larger values of the

astrophysical parameters, we have considered in Fig. 14, the following case, Eb =

3 × 1053 erg, and 〈Eν̄e〉 = 16 MeV. It can be seen how even for this choice the LMA-

MSW solution is allowed at 99% C.L unless 〈Eν̄h
〉 becomes uncomfortably large (τ = 2),

in which case no large mixing solutions remains at 3σ.

To elucidate more the importance of the different parameters, we show in Figs. 15

and 16 the confidence contours for low Eb combined with an average value of 〈Eν̄e〉
and vice versa. Comparing the two set of figures, one recognizes that a low value of Eb

can be more important for the “goodness-of-fit” of the LMA–MSW region than a low

value of 〈Eν̄e〉. In the case of small energy release, Eb = 1 × 1053 erg, the combined

best-fit point remains even for τ = 2 and 〈Eν̄e〉 = 14 MeV in the LMA–MSW region.

In Fig. 17 we illustrate in a global way the relative status of various oscillation solu-

tions to the solar neutrino problem and the qualitative impact of adding the SN 1987A

data. For each ∆ value we have optimized the χ2 with respect to ϑ. The solid curve

indicates the χ2 of the various oscillation solutions to the solar neutrino problem. The

non-solid curves correspond to the case where the SN 1987A data are included. The

dash-dotted line is for Eb = 3 × 1053 erg, τ = 1.4 and 〈Eν̄e〉 = 14 MeV. The dashed

line is for Eb = 3 × 1053 erg, τ = 1.4 and 〈Eν̄e〉 = 12 MeV. The dotted line is for

Eb = 3 × 1053 erg, τ = 1.7 and 〈Eν̄e〉 = 14 MeV. Here we have adjusted an arbitrary

constant which appears when combining the minimum likelihood-type SN 1987A anal-

ysis with the solar χ2 data analysis in such a way that the SMA solution gets unaffected

by the SN 1987A data. One notices that the effect of adding SN 1987A data is always

to worsen the status of presently preferred oscillation-type solutions. Within each such

curve one can compare the relative goodness of various solutions, however different

curves should not be qualitatively compared. In Fig. 18 we repeat this procedure after

optimizing over ∆ and displaying the result with respect to the mixing parameter ϑ.

In contrast to earlier investigations, we conclude that the observed neutrino signal
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of SN 1987A is compatible with the LMA–MSW solution, especially for “standard”

values of the neutrino energies together with small values of Eb
3. We note also that,

although the size of the LMA–MSW region in the combined fit may be substantially

reduced, the position of its local best-fit point is rather stable: the inclusion of the

SN 1987A data drives the local best-fit point to only slightly smaller values of ϑ and

∆. While there is no significant conflict between the solar and SN 1987A data for the

LMA–MSW solution, the case of the other large mixing solutions is different: even the

LOW solution which always gives a better fit than the vacuum-type solutions requires

a conspiracy of all astrophysical parameters to fit well the combined data.

V. SUMMARY AND DISCUSSION

We have discussed non-adiabatic neutrino oscillations in general power-law poten-

tials A ∝ xn. We found that the resonance point coincides only for a linear profile with

the point of maximal violation of adiabaticity. We presented the correct boundary

between the adiabatic and non-adiabatic regime for all ϑ and n. As a new method

to calculate the crossing probability also in the non-resonant regime we proposed a

different splitting of lnPc into a ϑ independent part κn and new correction functions

Gn which have a simple integral representation for all ϑ ∈ [0 :π/2].

As an important application for supernova neutrinos, we considered the case n =

−3 in detail. Comparing the different approximations used in the literature with

exact numerical results, we found that all of them fail in some part of the tan2 ϑ–

∆ plane. While the use of F1 = 1 together with A ∝ r−3 describes correctly the

crossing probability for small mixing in the resonant region, the errors become larger

for larger mixing until this approximation fails completely in the non-resonant region.

The correction function F∞ used for n = −3 describes quite accurately the most

interesting region of large mixing as well as the non-resonant region, but does not

reproduce the correct shape of the MSW triangle. In contrast, the results using the

F−3 and G−3 function agree very well with the numerical results for a 1/r3 profile in

the resonant region and for all ϑ, respectively.

Performing a combined likelihood analysis of the observed neutrino signal of

SN 1987A and solar neutrino data including the recent SNO CC measurement, we

have found that the supernova data offer additional discrimination power between the

different solutions of the solar neutrino puzzle. Unless all relevant supernova param-

eters lie close to their extreme values found in simulations, the status of the large

mixing solutions deteriorates, although the LMA solution may still survive as the best

3A deviation of equipartition, i.e. a smaller luminosity of ν̄µ,τ than of ν̄e, has a similar effect.
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fit of solar and SN 1987A data for acceptable choices of astrophysical parameters. In

particular, SN 1987A data generally favour its part with smaller values of ϑ and ∆.

In contrast the vacuum or “just-so” solution is excluded and the LOW solution is

significantly disfavoured for most reasonable choices of astrophysics parameters. The

SMA–MSW solution is absent at about the 3σ-level if solar data only are included but

may reappear once SN 1987A data are added, due to the worsening of the large mixing

type solutions.

Finally, we speculate about the possible impact of the SN 1987A data on the solar

neutrino problem in the near future. If the solution of the solar neutrino puzzle lies

in the LMA–MSW region, the KamLAND experiment [23] will determine ϑ and ∆

accurately [24] (unless ∆ > 2 10−4 eV2). However KamLAND cannot distinguish ϑ

from π/2 − ϑ. Both solar and SN 1987A data can make this distinction, and both

favour ϑ < π/4: in the solar case because it gives a MSW resonance in νe oscillations;

in the SN 1987A case because it gives no MSW resonance in ν̄e oscillations. On the other

hand, the knowledge of the neutrino mixing parameters would change the emphasis of

studies of the SN 1987A neutrino signal from particle physics to astrophysics and help

to shed new light on the allowed range of the astrophysical parameters.

Last but not least, let us mention that one should not forget a fundamental differ-

ence between the SN 1987A and the solar fits. In the solar case, a well-tested standard

solar model exists, whose errors in the various quantities from astro- and nuclear physics

can be estimated and are accounted for in the fit. In contrast there is no “standard

model” for type II supernovae and therefore also no well-established average values and

error estimates for the relevant astrophysical parameters. Nevertheless, experimental

data about SN 1987A exist, and is worth studying their consequences.
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FIGURES

r (x1011cm)

|ψ
2|2

FIG. 1. Survival probability p(r) = |ψ̃2(r)|2 as function of r for a neutrino produced

at r = 0 as ν̃2. The point of maximal violation of adiabaticity predicted by Eq. (11) is

indicated by a dot, while the resonance point for a power law profile A = 2EV0(r/R0)−3 with

∆/E = 2× 10−10 eV2/MeV, V0 = 1.5 × 10−9 eV and R0 = 109 cm is denoted by a star.

r (x1011cm)

d|
ψ 2|2 /d

r

FIG. 2. Change of the survival probability dp(r)/dr of a neutrino produced at r = 0 as

ν̃2 together with the point of maximal violation of adiabaticity (dot) and the resonance point

(star) for a power law profile A ∝ r−3. The height of the different curves is rescaled.
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FIG. 3. Contours of constant neutrino survival probability (dashed) together with the

borderlines Eq. (14) (solid) and (16) (dash-dotted) between adiabatic and non-adiabatic

regions for the solar density profile. The 90, 95, 99 and 99.73% C.L. contours for the different

solutions to the solar neutrino problem are also shown.

FIG. 4. Contours of constant anti-neutrino survival probability (dashed) together with

the borderlines Eq. (17) between adiabatic and non-adiabatic regions using Eq. (18) (solid)

and (15) (dash-dotted) for f(ϑ) for the SN profile given in the text; the dotted line shows the

borderline for neutrinos. The 90, 95, 99 and 99.73% C.L. contours for the different solutions

to the solar neutrino problem are also shown.
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FIG. 5. Analytical structure of the function ∆m together with the different integration

paths used in Sec. IIIB for the special case n = 1. The branch cut is shown by a wavy line,

poles by crosses; an additional pole appears for n < 0 at x = 0.
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FIG. 6. Contours of constant survival probability Pēē, numerically (solid lines), with G−3

(dashed lines) and F−3 (filled circles, only for ϑ > π/4), for A ∝ r−3 as given in the text.
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FIG. 7. Comparison of the contours of constant survival probability Pēē calculated nu-

merically (solid lines) and with the linear approximation F1 = 1 (dashed lines) for A ∝ r−3

as given in the text.
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FIG. 8. Comparison of the contours of constant survival probability Pēē calculated numer-

ically (solid lines) for A ∝ r−3 and with the exponential approximation A ∝ exp(−r/Rexp
0 )

(dashed lines) with Rexp
0 = 100×Rpower

0 .
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FIG. 9. Comparsion of the contours of constant survival probability Pēēcalculated nu-

merically for a M = 20M� progenitor star from Ref. [16] (dotted lines) and calculated for

A ∝ r−3 with the PLSZ approximation (solid lines).

23



FIG. 10. Likelihood ratio ln(R) relative to the NO–OSC hypothesis, as function of tan2 ϑ

and ∆/eV2 for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom) together

with the different solutions to the solar neutrino problem. All figures for Eb = 1.5× 1053 erg

and 〈Eν̄e〉 = 12 MeV.
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FIG. 11. Likelihood ratio ln(R) relative to the NO–OSC hypothesis, as function of tan2 ϑ

and ∆/eV2 for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom) together

with the different solutions to the solar neutrino problem. All figures for Eb = 3 × 1053 erg

and 〈Eν̄e〉 = 14 MeV.
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FIG. 12. The 90, 95, 99 and 99.73% C.L. contours of the combined fit of solar and

SN 1987A data (coloured/grey) together with the contours of the solar data alone (solid

lines); for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom). All figures for

Eb = 3× 1053 erg and 〈Eν̄e〉 = 14 MeV.
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FIG. 13. The 90, 95, 99 and 99.73% C.L. contours of the combined fit of solar and

SN 1987A data (coloured/grey) together with the contours of the solar data alone (solid

lines); for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom). All figures for

Eb = 1.5× 1053 erg and 〈Eν̄e〉 = 12 MeV.
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FIG. 14. The 90, 95, 99 and 99.73% C.L. contours of the combined fit of solar and

SN 1987A data (coloured/grey) together with the contours of the solar data alone (solid

lines); for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom). All figures for

Eb = 3× 1053 erg and 〈Eν̄e〉 = 16 MeV.
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FIG. 15. The 90, 95, 99 and 99.73% C.L. contours of the combined fit of solar and

SN 1987A data (coloured/grey) together with the contours of the solar data alone (solid

lines); for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom). All figures for

Eb = 1× 1053 erg and 〈Eν̄e〉 = 14 MeV.
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FIG. 16. The 90, 95, 99 and 99.73% C.L. contours of the combined fit of solar and

SN 1987A data (coloured/grey) together with the contours of the solar data alone (solid

lines); for τ = 〈Eν̄h
〉/〈Eν̄e〉 = 1.4 (top), τ = 1.7 (middle) and τ = 2 (bottom). All figures for

Eb = 3× 1053 erg and 〈Eν̄e〉 = 12 MeV.
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FIG. 17. The solid curve indicates the χ2 of the various oscillation solutions to the solar

neutrino problem. The non-solid curves illustrate the effect of adding the SN 1987A data,

which worsens the status of large mixing-type solutions. See text for explanation.
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FIG. 18. Same as in Fig. 17 but displayed with respect to ϑ; see text for explanation.
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