29 research outputs found

    Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark

    Get PDF
    BACKGROUND: Quarter milk samples from cows with high risk of intramammary infection were examined to determine the prevalence of Staphylococcus aureus (SA) and penicillin resistant SA (SAr) in conventional and organic dairy herds and herds converting to organic farming in a combined longitudinal and cross-sectional study. METHODS: 20 conventional herds, 18 organic herds that converted before 1995, and 19 herds converting to organic farming in 1999 or 2000 were included in the study. Herds converting to organic farming were sampled three times one year apart; the other herds were sampled once. Risk of infection was estimated based on somatic cell count, milk production, breed, age and lactation stage. RESULTS: The high-risk cows represented about 49 % of the cows in the herds. The overall prevalence of SA and SAr among these cows was 29% (95% confidence interval: 24%–34%) and 4% (95% confidence interval: 2%–5%) respectively. The prevalence of penicillin resistance among SA infected cows was 12% (95% confidence interval: 6%–19%) when calculated from the first herd visits. No statistically significant differences were observed in the prevalence of SAr or the proportion of isolates resistant to penicillin between herd groups. CONCLUSION: The proportion of isolates resistant to penicillin was low compared to studies in other countries except Norway and Sweden. Based on the low prevalence of penicillin resistance of SA, penicillin should still be the first choice of antimicrobial agent for treatment of bovine intramammary infection in Denmark

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Nucleoside phosphorylases from clostridium perfringens in the synthesis of 2',3'-dideoxyinosine.

    No full text
    Four Clostridium perfringens phosphorylases were subcloned, overexpressed and analyzed for their substrate specificity. DeoD(1) and PunA could use a variety of purine substrates, including an antiviral drug 2',3'-dideoxyinosine (ddI). In one-pot synthesis using Clostridium phosphorylases, 2',3'-dideoxyuridine and hypoxanthine were converted to ddI at yield of about 30%

    Nucleoside phosphorylases from clostridium perfringens in the synthesis of 2',3'-dideoxyinosine

    No full text
    Four Clostridium perfringens phosphorylases were subcloned, overexpressed and analyzed for their substrate specificity. DeoD(1) and PunA could use a variety of purine substrates, including an antiviral drug 2',3'-dideoxyinosine (ddI). In one-pot synthesis using Clostridium phosphorylases, 2',3'-dideoxyuridine and hypoxanthine were converted to ddI at yield of about 30%

    Developing a collection of immobilized nucleoside phosphorylases for the preparation of nucleoside analogues: Enzymatic synthesis of arabinosyladenine and 2',3'-dideoxyinosine

    Get PDF
    The use of nucleoside phosphorylases (NPs; EC 2.4.2.n) represents a convenient alternative to the chemical route for the synthesis of natural and modified nucleosides. We purified four recombinantly expressed nucleoside phosphorylases from the bacterial pathogens Citrobacter koseri, Clostridium perfringens, and Streptococcus pyogenes (CkPNPI, CkPNPII, CpUP, SpUP) and their substrate specificity was investigated towards either natural pyrimidine or purine nucleosides and some analogues, namely, arabinosyladenine (araA) and 2',3'-dideoxyinosine (ddI). A 2-3 % activity towards these latter compounds (compared to the natural substrates) was observed. Enzyme activities were compared to the specificities obtained for the enzymes pyrimidine nucleoside phosphorylase from Bacillus subtilis (BsPyNP) and purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNPII) previously reported by some of the authors. The enzymes displaying the suitable specificity for the synthesis of araA and ddI were immobilized on aldehyde-agarose. The immobilized preparations were highly stable at alkaline pH and in the presence of methanol or acetonitrile as cosolvent. They were used in the synthesis of araA and ddI by a one-pot, bienzymatic transglycosylation achieving 74 and 44 % conversion, respectively. Something different: Nucleoside phosphorylases are a convenient alternative to the chemical route for the synthesis of natural and modified nucleosides. Four new nucleoside phosphorylases have been prepared, characterized, and tested for their use in biocatalyzed syntheses of araA and ddI (see scheme). A generally applicable immobilization technique has been found to provide active and stable biocatalysts. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Fil: Serra, Immacolata. University of Pavia; ItaliaFil: Ubiali, Daniela. University of Pavia; ItaliaFil: Piskur, Jure. Lund University; SueciaFil: Christoffersen, Stig. Lund University; SueciaFil: Lewkowicz, Elizabeth Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Iribarren, Adolfo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Albertini, Alessandra M.. University of Pavia; ItaliaFil: Terreni, Marco. University of Pavia; Itali
    corecore