96 research outputs found

    Heme metabolism genes Downregulated in COPD Cachexia.

    Get PDF
    IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage

    It's more than low BMI: prevalence of cachexia and associated mortality in COPD

    Get PDF
    Background: Cachexia is associated with increased mortality risk among chronic obstructive pulmonary disease (COPD) patients. However, low body mass index (BMI) as opposed to cachexia is often used, particularly when calculating the BODE (BMI, Obstruction, Dyspnea and Exercise) index. For this reason, we examined mortality using a consensus definition and a weight-loss definition of cachexia among COPD cases and compared two new COPD severity indices with BODE. Methods: In the current report, the consensus definition for cachexia incorporated weight-loss > 5% in 12-months or low BMI in addition to 3/5 of decreased muscle strength, fatigue, anorexia, low FFMI and inflammation. The weight-loss definition incorporated weight-loss > 5% or weight-loss > 2% (if low BMI) in 12-months. The low BMI component in BODE was replaced with the consensus definition to create the CODE (Consensus cachexia, Obstruction, Dyspnea and Exercise) index and the weight-loss definition to create the WODE (Weight loss, Obstruction, Dyspnea and Exercise) index. Mortality was assessed using Kaplan-Meier survival and Cox Regression. Performance of models was compared using C-statistics. Results: Among 1483 COPD cases, the prevalences of cachexia by the consensus and weight-loss definitions were 4.7 and 10.4%, respectively. Cachectic patients had a greater than three-fold increased mortality by either the consensus or the weight-loss definition of cachexia independent of BMI and lung function. The CODE index predicted mortality slightly more accurately than the BODE and WODE indices. Conclusions: Cachexia is associated with increased mortality among COPD patients. Monitoring cachexia using weight-loss criteria is relatively simple and predictive of mortality among COPD cases who may be missed if only low BMI is used

    Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1

    Get PDF
    Background: There have been a number of candidate gene association studies of cancer cachexia-related traits, but no genome-wide association study (GWAS) has been published to date. Cachexia presents in patients with a number of complex traits, including both cancer and COPD. The objective of the current investigation was to search for a shared genetic aetiology for change in body mass index (ΔBMI) among cancer and COPD by using GWAS data in the Framingham Heart Study. Methods: A linear mixed effects model accounting for age, sex, and change in smoking status was used to calculate ΔBMI in participants over 40 years of age with three consecutive BMI time points (n = 4162). Four GWAS of ΔBMI using generalized estimating equations were performed among 1085 participants with a cancer diagnosis, 204 with gastrointestinal (GI) cancer, 112 with lung cancer, and 237 with COPD to test for association with 418 365 single-nucleotide polymorphisms (SNPs). Results: Two SNPs reached a level of genome-wide significance (P < 5 × 10−8) with ΔBMI: (i) rs41526344 within the CNTN4 gene, among COPD cases (β = 0.13, P = 4.3 × 10−8); and (ii) rs4751240 in the gene Dedicator of Cytokinesis 1 (DOCK1) among GI cancer cases (β = 0.10, P = 1.9 × 10−8). The DOCK1 SNP association replicated in the ΔBMI GWAS among COPD cases (βmeta-analyis = 0.10, Pmeta-analyis = 9.3 × 10−10). The DOCK1 gene codes for the dedicator of cytokinesis 1 protein, which has a role in myoblast fusion. Conclusions: In sum, one statistically significant common variant in the DOCK1 gene was associated with ΔBMI in GI cancer and COPD cases providing support for at least partially shared aetiology of ΔBMI in complex diseases

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline:Five-Year Follow-up in Adult Smokers From the COPDGene Study

    Get PDF

    Avoiding pitfalls in overseas medical educational experiences

    No full text
    In the United States, there are a growing number of medical students participating in international health electives. These experiences have the potential to be mutually beneficial to both the host country and the student. However, there is a significant risk of unethical and damaging practices during these trips, including concerns for sending trainees without appropriate pre-travel preparation with inadequate accountability to local health care providers at a stage in their education that imposes an undue burden on the local health facilities. This article describes one first year medical student’s experience in navigating common challenges faced in international health electives and offers practical advice enlightened by the literature on how to overcome them. We emphasize the need for students to ensure adequate pre-trip preparation, communicate their level of training clearly, practice cultural humility, ensure personal safety, and engage in projects needed by the host community

    General Pain and Frequency of Medical Visits in Family Medicine

    No full text
    corecore