60 research outputs found

    Chronology with a pinch of salt:Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity

    Get PDF
    The Messinian Salinity Crisis (MSC; 5.97–5.33 Ma) is considered an extreme environmental event driven by changes in climate and tectonics, which affected global ocean salinity and shaped the biogeochemical composition of the Mediterranean Sea. Yet, after more than 50 years of research, MSC stratigraphy remains controversial. Recent studies agree that the transition from the underlying pre-evaporite sediments to thick halite deposits is conformal in the deep Eastern Mediterranean Basin. However, the age of the base and the duration of halite deposition are still unclear. Also disputed is the nature of the intermediate and upper MSC units, which are characterized as periods of increased clastic deposition into the Eastern Mediterranean based on marginal outcrops and seismic data. We provide a multidisciplinary study of sedimentary, geochemical, and geophysical data from industrial offshore wells in the Levant Basin, which recovered a sedimentary record of deep-basin Mediterranean evaporites deposited during the MSC. In combination with previous observations of the MSC throughout the Mediterranean Basin, our results promote the need for a new chronological model. Remarkably, the one-kilometer-thick lower part of the evaporitic unit is composed of essentially pure halite, except for a thin transitional anhydrite layer at its base. The halite is undisturbed and homogeneous, lacking diverse features apparent in more proximal sections, indicating a deep-sea depositional environment. We find that distinct, meters-thick non-evaporitic intervals interbedded with the halite, previously thought to be clastic layers, are diatomites. While XRD analysis confirms an increase in clastic components in these sediments, they are composed primarily of well-preserved marine and freshwater planktonic diatoms. The occurrence of marine planktonic diatoms in these intervals indicates the input of Atlantic waters into the Mediterranean Basin during the deposition of the massive halite unit. Seismic stratigraphy and well-log cyclostratigraphy further support deep basin halite deposition, which started about 300 kyr earlier than widely assumed (~5.97 Ma). We propose that halite deposition in the deep Mediterranean took place during stage 1 of the MSC, rather than being limited to the short 50 kyr MSC acme when sea level was presumably at its lowest. Thus, brine formation, salt precipitation, and faunal extinction occurred at least in part in a deep, non-desiccated basin, with a restricted yet open Mediterranean-Atlantic connection that allowed inflow of oceanic water. We observe an increase in heavy minerals and reworked fauna within the clastic-evaporitic, Interbedded Evaporites of the basinal MSC section, and argue that these settings correspond in the deep basins with a significant sea-level drawdown during stage 2 of the MSC, as observed in the marginal sections. This correlation is corroborated by astrochronology and chemostratigraphic markers, such as the distribution of n-alkanes and biomarker-based thermal maturity indices. The Levant deposits indicate that high sea level and partial connectivity with global oceans promoted the deposition of deep-basin deep-water halite, while sea-level drawdown promoted deposition of reworked and transported material from the margins into deep Mediterranean basins. This study modifies the current understanding of the mechanisms governing salt deposition throughout the MSC with implications for other evaporitic events in the geologic record

    Variability and Change in the West Antarctic Peninsula Marine System: Research Priorities and Opportunities

    Get PDF
    The west Antarctic Peninsula (WAP) region has undergone significant changes in temperature and seasonal ice dynamics since the mid-twentieth century, with strong impacts on the regional ecosystem, ocean chemistry and hydrographic properties. Changes to these long-term trends of warming and sea ice decline have been observed in the 21st century, but their consequences for ocean physics, chemistry and the ecology of the high-productivity shelf ecosystem are yet to be fully established. The WAP shelf is important for regional krill stocks and higher trophic levels, whilst the degree of variability and change in the physical environment and documented biological and biogeochemical responses make this a model system for how climate and sea ice changes might restructure high-latitude ecosystems. Although this region is arguably the best-measured and best-understood shelf region around Antarctica, significant gaps remain in spatial and temporal data capable of resolving the atmosphere-ice-ocean-ecosystem feedbacks that control the dynamics and evolution of this complex polar system. Here we summarise the current state of knowledge regarding the key mechanisms and interactions regulating the physical, biogeochemical and biological processes at work, the ways in which the shelf environment is changing, and the ecosystem response to the changes underway. We outline the overarching cross-disciplinary priorities for future research, as well as the most important discipline-specific objectives. Underpinning these priorities and objectives is the need to better define the causes, magnitude and timescales of variability and change at all levels of the system. A combination of traditional and innovative approaches will be critical to addressing these priorities and developing a co-ordinated observing system for the WAP shelf, which is required to detect and elucidate change into the future

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore