30 research outputs found

    Temporal evolution of short-lived penumbral microjets

    Full text link
    Context. Penumbral microjets are elongated jet-like brightenings observed in the chromosphere above sunspot penumbrae. They are transient events that last from a few seconds to several minutes and are thought to originate from magnetic reconnection processes. Previous studies have mainly focused on their morphological and spectral characteristics, and more recently on their spectropolarimetric signals during the maximum brightness stage. Studies addressing the temporal evolution of PMJs have also been carried out, but they are based on spatial and spectral time variations only. Aims. Here we investigate the temporal evolution of the polarization signals produced by short-lived PMJs (lifetimes << 2 minutes) to infer how the magnetic field vector evolves in the upper photosphere and mid-chromosphere. Methods. We use fast-cadence spectropolarimetric observations of the Ca II 854.2 nm line taken with the CRisp Imaging Spectropolarimeter at the Swedish 1-m Solar Telescope. The weak-field approximation (WFA) is used to estimate the strength and inclination of the magnetic field vector. Results. The WFA reveals larger magnetic field changes in the upper photosphere than in the chromosphere during the PMJ maximum brightness stage. In the photosphere, the magnetic field inclination and strength undergo a transient increase for most PMJs, but in 25%\% of the cases the field strength decreases during the brightening. In the chromosphere, the magnetic field tends to be slightly stronger during the PMJs. Conclusions. The propagation of compressive perturbation fronts followed by a rarefaction phase in the aftershock region may explain the observed behavior of the magnetic field vector. The fact that such behavior varies among the analyzed PMJs could be a consequence of the limited temporal resolution of the observations and the fast-evolving nature of the PMJs.Comment: Paper accepted for publication in section 9. The Sun and the Heliosphere of Astronomy and Astrophysics. 18 pages, 21 figure

    Plan de negocio para implementar un centro especializado de hemodi?lisis en la regi?n de Hu?nuco

    Get PDF
    La poblaci?n de regiones como Hu?nuco y Pasco son muy vulnerables a sufrir enfermedades renales cr?nicas; sin embargo, no cuentan con espacios adecuados para un debido tratamiento y el sector p?blico no logra cubrir toda la demanda, por lo cual los pacientes de la regi?n centro del pa?s deben de trasladarse constantemente hasta la ciudad de Lima, esto no s?lo los afecta econ?micamente, sino que incide de modo negativo en su calidad de vida. Ante esta problem?tica, la implementaci?n de un centro que brinde el servicio de hemodi?lisis, no s?lo es necesario, sino que, ante esta situaci?n, se hace urgente

    IAA : Información y actualidad astronómica (66) (2022)

    Get PDF
    Nómadas estelares.- Cuatro años del proyecto Severo Ochoa del IAA.- Deconstrucción. Proyecto MASCOT. Primera liberación de datos.- El Moby Dick de Azaymi Siu (IAA-CSIC).- Historias: Exposición AstrónomAs.- Actualidad.Este número ha contado con el apoyo económico de la Agencia Estatal de Investigación (Ministerio de Ciencia, Innovación y Universidades) a través de la acreditación de Centro de Excelencia Severo Ochoa para el Instituto de Astrofísica de Andalucía (SEV-2017-0709). La página web de esta revista ha sido financiada por la Sociedad Española de Astronomía (SEA).Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Evershed and Counter-Evershed Flows in Sunspot MHD Simulations

    No full text
    There have been a few reports in the literature of counter-Evershed flows observed in well-developed sunspot penumbrae, i.e., flows directed toward the umbra along penumbral filaments. Here, we investigate the driving forces of such counter-Evershed flows in a radiative magnetohydrodynamic simulation of a sunspot, and compare them to the forces acting on the normal Evershed flow. The simulation covers a timespan of 100 solar hours and generates an Evershed outflow exceeding 8 km s−1 in the penumbra along radially aligned filaments where the magnetic field is almost horizontal. Additionally, the simulation produces a fast counter-Evershed flow (i.e., an inflow near τ=1\tau =1) in some regions within the penumbra, reaching peak flow speeds of ~12 km s−1. The counter-Evershed flows are transient and typically last a few hours before they turn into outflows again. By using the kinetic energy equation and evaluating its various terms in the simulation box, we found that the Evershed flow occurs due to overturning convection in a strongly inclined magnetic field, while the counter-Evershed flows can be well-described as siphon flows

    A modified Milne-Eddington approximation for a qualitative interpretation of chromospheric spectral lines

    No full text
    Context. The Milne-Eddington approximation provides an analytic and simple solution to the radiative transfer equation. It can be easily implemented in inversion codes used to fit spectro-polarimetric observations and infer average values of the magnetic field vector and the line-of-sight velocity of the solar plasma. However, in principle, it is restricted to spectral lines that are formed under local thermodynamic conditions, namely, photospheric and optically thin lines. Aims. We show that a simple modification to the Milne-Eddington approximation is sufficient to infer relevant physical parameters from spectral lines that deviate from local thermodynamic equilibrium, such as those typically observed in the solar chromosphere. Methods. We modified the Milne-Eddington approximation by including several exponential terms in the source function to reproduce the prototypical shape of chromospheric spectral lines. To check the validity of such an approximation, we first studied the influence of these new terms on the profile shape by means of the response functions. Then we tested the performance of an inversion code including the modification against the presence of noise. The approximation was also tested with realistic spectral lines generated with the RH numerical radiative transfer code. Finally, we confronted the code with synthetic profiles generated from magneto-hydrodynamic simulations carried out with the Bifrost code. For the various tests, we focused on the vector magnetic field and the line-of-sight velocity. We compared our results with the weak-field approximation and center of gravity technique as well. Results. The response function corresponding to the new terms in the source function have no trade-offs with the response to the different components of the magnetic field vector and line-of-sight velocity. This allows us to perform a robust inference of the physical parameters from the interpretation of spectral line shapes. The strategy has been successfully applied to synthetic chromospheric Stokes profiles generated with both standard models and realistic magnetohydrodynamic (MHD) simulations. The magnetic field vector and velocity can be successfully recovered with the modified Milne-Eddington approximation. Conclusions. Milne-Eddington model atmospheres that include exponential terms are not new to the solar community but have been overlooked for quite some time. We show that our modification to the Milne-Eddington approximation succeeds in reproducing the profile shape of two chromospheric spectral lines, namely, the Mg I b2 line and the Ca II at 854.2 nm. The results obtained with this approach are in good agreement with the results obtained from the weak field approximation (for magnetic field) and the center of gravity (for velocity). However, the Milne-Eddington approximation possesses a great advantage over classical methods since it is not limited to weak magnetic fields or to a restricted range of velocities. © ESO 2022.This work has been funded by the Spanish Science Ministry of Science and Innovation through project RTI2018-096886-B-C51, including a percentage from FEDER funds, and through the Centro de Excelencia Severo Ochoa grant SEV-2017-0709 awarded to the Instituto de Astrofísica de Andalucía in the period 2018-2022. A.D.M. acknowledges financial support through the Ph.D. grant BES-2017-082605 of the Ministry of Economy, Industry and Competitiveness. C.Q.N. was supported by the EST Project Office, funded by the Canary Islands Government (file SD 17/01) under a direct grant awarded to the IAC on ground of public interest, and this activity has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500. D.O.S. acknowledges financial support through the Ramón y Cajal fellowship.Peer reviewe

    Superstrong photospheric magnetic fields in sunspot penumbrae

    No full text
    Context. Recently, there have been some reports of unusually strong photospheric magnetic fields (which can reach values of over 7 kG) inferred from Hinode SOT/SP sunspot observations within penumbral regions. These superstrong penumbral fields are even larger than the strongest umbral fields on record and appear to be associated with supersonic downflows. The finding of such fields has been controversial since they seem to show up only when spatially coupled inversions are performed. Aims. Here, we investigate and discuss the reliability of those findings by studying in detail observed spectra associated with particularly strong magnetic fields at the inner edge of the penumbra of active region 10930. Methods. We applied classical diagnostic methods and various inversions with different model atmospheres to the observed Stokes profiles in two selected pixels with superstrong magnetic fields, and compared the results with a magnetohydrodynamic simulation of a sunspot whose penumbra contains localized regions with strong fields (nearly 5 kG at τ = 1) associated with supersonic downflows. Results. The different inversions provide different results: while the SPINOR 2D inversions consider a height-dependent single-component model and return B >  7 kG and supersonic positive vLOS (corresponding to a counter-Evershed flow), height-dependent two-component inversions suggest the presence of an umbral component (almost at rest) with field strengths ∼4 − 4.2 kG and a penumbral component with vLOS ∼ 16 − 18 km s−1 and field strengths up to ∼5.8 kG. Likewise, height-independent two-component inversions find a solution for an umbral component and a strongly redshifted (vLOS ∼ 15 − 17 km s−1) penumbral component with B ∼ 4 kG. According to a Bayesian information criterion, the inversions providing a better balance between the quality of the fits and the number of free parameters considered by the models are the height-independent two-component inversions, but they lie only slightly above the SPINOR 2D inversions. Since it is expected that the physical parameters all display considerable gradients with height, as supported by magnetohydrodynamic (MHD) sunspot simulations, the SPINOR 2D inversions are the preferred ones. Conclusions. According to the MHD sunspot simulation analyzed here, the presence of counter-Evershed flows in the photospheric penumbra can lead to the necessary conditions for the observation of ∼5 kG fields at the inner penumbra. Although a definite conclusion about the potential existence of fields in excess of 7 kG cannot be given, their nature could be explained (based on the simulation results) as the consequence of the extreme dynamical effects introduced by highly supersonic counter-Evershed flows (vLOS >  10 km s−1 and up to ∼30 km s−1 according to SPINOR 2D). The latter are much faster and more compressive downflows than those found in the MHD simulations and therefore could lead to field intensification up to considerably stronger fields. Also, a lower gas density would lead to a deeper depression of the τ = 1 surface, making possible the observation of deeper-lying stronger fields. The superstrong magnetic fields are expected to be nearly force-free, meaning that they can attain much larger strengths than expected when considering only balance between magnetic pressure and the local gas pressure

    Magnetic properties of short-lived penumbral microjets

    No full text
    Contributions to the XIV.0 Scientific Meeting (virtual) of the Spanish Astronomical Society, held 13-15 July 2020, online at https://www.sea-astronomia.es/reunion-cientifica-2020, id.208.We investigate the temporal evolution of the polarization properties during penumbral microjets (PMJs). Studying the magnetic properties of these transients requires spectropolarimetric observations with the fastest temporal cadence possible and is currently a challenging task. In this work, we used fast temporal cadence spectropolarimetric measurements of the Ca II 8542 A line from the CRISP instrument at the Swedish 1 m Solar Telescope, and exploited the diagnosis capabilities of this line to retrieve the magnetic field configuration and its evolution at different atmospheric heights during PMJs. Our findings show that the short-lived PMJs are associated to a transient perturbation in the photospheric magnetic field and sometimes they show clear but weaker changes in the chromospheric field as well. Here we describe the different types of evolution that were identified.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation SEV-2017-070
    corecore