41 research outputs found

    Allogeneic Non-Adherent Bone Marrow Cells Facilitate Hematopoietic Recovery but Do Not Lead to Allogeneic Engraftment

    Get PDF
    Background Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4?/?, HLA-DR3+ mice. Methodology/Principal Findings Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death. Conclusions/Significance NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies

    Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens

    Get PDF
    Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation. Thus, we set out to quantitatively monitor adipocyte shape and size changes with differentiation and lipid accumulation. We quantified by optical diffraction tomography that differentiating preadipocytes increased their volumes drastically. Atomic force microscopy (AFM)-indentation and -microrheology revealed that during the early phase of differentiation, human preadipocytes became more compliant and more fluid-like, concomitant with ROCK-mediated F-actin remodelling. Adipocytes that had accumulated large lipid droplets were more compliant, and further promoting lipid accumulation led to an even more compliant phenotype. In line with that, high fat diet-induced obesity was associated with more compliant adipose tissue compared to lean animals, both for drosophila fat bodies and murine gonadal adipose tissue. In contrast, adipose tissue of diabetic mice became significantly stiffer as shown not only by AFM but also magnetic resonance elastography. Altogether, we dissect relative contributions of the cytoskeleton and lipid droplets to cell and tissue mechanical changes across different functional states, such as differentiation, nutritional state and disease. Our work therefore sets the basis for future explorations on how tissue mechanical changes influence the behaviour of mechanosensitive tissue-resident cells in metabolic disorders

    A One Health Approach to Defining Animal and Human Helminth Exposure Risks in a Tribal Village in Southern India.

    Get PDF
    The high burden of soil-transmitted helminth infections has been studied in India; however, little data exist on zoonotic helminths, and on animal-associated exposure to soil-transmitted helminths. Our study took place in the Jawadhu Hills, which is a tribal region in Tamil Nadu, India. Using a One Health approach, we included animal and environmental samples and human risk factors to answer questions about the associations among infected household soil, domestic animals, and human risk factors. Helminth eggs were identified by microscopy in animal and soil samples, and a survey about risk factors was administered to the head of the household. Contact with animals was reported in 71% of households. High levels of helminth infections were found across domestic animal species, especially in goats, chickens, and dogs. Helminth eggs were recorded in 44% of household soil (n = 43/97) and separately in 88% of soil near a water source (n = 28/32). Animal contact was associated with 4.05 higher odds of having helminth eggs in the household soil (P = 0.01), and also having a water source at the household was associated with a 0.33 lower odds of having helminth eggs in the household soil (P = 0.04). Soil moisture was a mediator of this association with a significant indirect effect (P < 0.001). The proportion mediated was 0.50. While our work does not examine transmission, these results support consideration of animal-associated exposure to STH and potentially zoonotic helminths in future interventions to reduce helminth burden. Our study provides support for further investigation of the effects of animals and animal fecal matter on human health

    Global change drivers and the risk of infectious disease

    Full text link
    Anthropogenic change is contributing to the rise in emerging infectious diseases, but it remains unclear which global change drivers most increase disease and under what contexts. We amassed a dataset from the literature that includes 1,832 observations of infectious disease responses to global change drivers across 1,202 host-parasite combinations. We found that biodiversity loss, climate change, and introduced species were associated with increases in disease-related endpoints or harm (i.e., enemy release for introduced species), whereas urbanization was associated with decreases in disease endpoints. Natural biodiversity gradients, deforestation, forest fragmentation, and most classes of chemical contaminants had non-significant effects on these endpoints. Overall, these results were consistent across human and non-human diseases. Context-dependent effects of the global change drivers on disease were common and are discussed. These findings will help better target disease management and surveillance efforts towards global change drivers that increase disease.One-Sentence SummaryHere we quantify which global change drivers increase infectious diseases the most to better target global disease management and surveillance efforts

    In planta deglycosylation improves the SARS-CoV-2 neutralization activity of recombinant ACE2-Fc

    Get PDF
    SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection

    Detecting forest response to droughts with global observations of vegetation water content

    Get PDF
    Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Equine Influenza Virus—A Neglected, Reemergent Disease Threat

    No full text
    Equine influenza virus (EIV) is a common, highly contagious equid respiratory disease. Historically, EIV outbreaks have caused high levels of equine illness and economic damage. Outbreaks have occurred worldwide in the past decade. The risk for EIV infection is not limited to equids; dogs, cats, and humans are susceptible. In addition, equids are at risk from infection with avian influenza viruses, which can increase mortality rates. EIV is spread by direct and indirect contact, and recent epizootics also suggest wind-aided aerosol transmission. Increased international transport and commerce in horses, along with difficulties in controlling EIV with vaccination, could lead to emergent EIV strains and potential global spread. We review the history and epidemiology of EIV infections, describe neglected aspects of EIV surveillance, and discuss the potential for novel EIV strains to cause substantial disease burden and subsequent economic distress

    Low Prevalence of Enzootic Equine Influenza Virus among Horses in Mongolia

    No full text
    Horses are critically important for Mongolian herders’ livelihoods, providing transportation and food products, and playing important cultural roles. Equine influenza virus (EIV) epizootics have been frequent among Mongolia’s horses, with five occurring since 1970. We sought to estimate the prevalence for EIV infection among horses and Bactrian camels with influenza-like illness between national epizootics. In 2016–2017, active surveillance for EIV was periodically performed in four aimags (provinces). Nasal swabs were collected from 680 horses and 131 camels. Seven of the horse swabs were “positive” for qRT-PCR evidence of influenza A (Ct value ≤ 38). Two more were “suspect positive” (Ct value &gt; 38 and ≤ 40). These nine specimens were collected from four aimags. None of the camel specimens had molecular evidence of infection. Despite serial blind passage in Madin-Darby Canine Kidney cells (MDCK) cells, none of the nine horse specimens yielded an influenza A virus. None of the 131 herder households surveyed had recently vaccinated their horses against EIV. It seems likely that sporadic EIV is enzootic in multiple Mongolian aimags. This finding, the infrequent use of EIV vaccination, periodic prevalence of highly pathogenic avian influenza, and the mixing of domestic and wild equid herds suggest that Mongolia may be a hot spot for novel EIV emergence
    corecore