338 research outputs found

    Influence of routine computed tomography on predicted survival from blunt thoracoabdominal trauma

    Get PDF
    Item does not contain fulltextINTRODUCTION: Many scoring systems have been proposed to predict the survival of trauma patients. This study was performed to evaluate the influence of routine thoracoabdominal computed tomography (CT) on the predicted survival according to the trauma injury severity score (TRISS). PATIENTS AND METHODS: 1,047 patients who had sustained a high-energy blunt trauma over a 3-year period were prospectively included in the study. All patients underwent physical examination, conventional radiography of the chest, thoracolumbar spine and pelvis, abdominal sonography, and routine thoracoabdominal CT. From this group with routine CT, we prospectively defined a selective CT (sub)group for cases with abnormal physical examination and/or conventional radiography and/or sonography. Type and extent of injuries were recorded for both the selective and the routine CT groups. Based on the injuries found by the two different CT algorithms, we calculated the injury severity scores (ISS) and predicted survivals according to the TRISS methodology for the routine and the selective CT algorithms. RESULTS: Based on injuries detected by the selective CT algorithm, the mean ISS was 14.6, resulting in a predicted mortality of 12.5%. Because additional injuries were found by the routine CT algorithm, the mean ISS increased to 16.9, resulting in a predicted mortality of 13.7%. The actual observed mortality was 5.4%. CONCLUSION: Routine thoracoabdominal CT in high-energy blunt trauma patients reveals more injuries than a selective CT algorithm, resulting in a higher ISS. According to the TRISS, this results in higher predicted mortalities. Observed mortality, however, was significantly lower than predicted. The predicted survival according to MTOS seems to underestimate the actual survival when routine CT is used

    Sudden cardiac death athletes: a systematic review

    Get PDF
    Previous events evidence that sudden cardiac death (SCD) in athletes is still a reality and it keeps challenging cardiologists. Considering the importance of SCD in athletes and the requisite for an update of this matter, we endeavored to describe SCD in athletes. The Medline (via PubMed) and SciELO databases were searched using the subject keywords "sudden death, athletes and mortality". The incidence of SCD is expected at one case for each 200,000 young athletes per year. Overall it is resulted of complex dealings of factors such as arrhythmogenic substrate, regulator and triggers factors. In great part of deaths caused by heart disease in athletes younger than 35 years old investigations evidence cardiac congenital abnormalities. Athletes above 35 years old possibly die due to impairments of coronary heart disease, frequently caused by atherosclerosis. Myocardial ischemia and myocardial infarction are responsible for the most cases of SCD above this age (80%). Pre-participatory athletes' evaluation helps to recognize situations that may put the athlete's life in risk including cardiovascular diseases. In summary, cardiologic examinations of athletes' pre-competition routine is an important way to minimize the risk of SCD

    Cardiac Screening of Young Athletes: a Practical Approach to Sudden Cardiac Death Prevention.

    Get PDF
    PURPOSE OF REVIEW: We aim to report on the current status of cardiovascular screening of athletes worldwide and review the up-to-date evidence for its efficacy in reducing sudden cardiac death in young athletes. RECENT FINDINGS: A large proportion of sudden cardiac death in young individuals and athletes occurs during rest with sudden arrhythmic death syndrome being recognised as the leading cause. The international recommendations for ECG interpretation have reduced the false-positive ECG rate to 3% and reduced the cost of screening by 25% without compromising the sensitivity to identify serious disease. There are some quality control issues that have been recently identified including the necessity for further training to guide physicians involved in screening young athletes. Improvements in our understanding of young sudden cardiac death and ECG interpretation guideline modification to further differentiate physiological ECG patterns from those that may represent underlying disease have significantly improved the efficacy of screening to levels that may make screening more attractive and feasible to sporting organisations as a complementary strategy to increased availability of automated external defibrillators to reduce the overall burden of young sudden cardiac death

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein

    Get PDF
    Impaired DNA damage response (DDR) may play a fundamental role in the pathogenesis of breast cancer (BC). RAD51 is a key player in DNA double-strand break repair. In this study, we aimed to assess the biological and clinical significance of RAD51 expression with relevance to different molecular classes of BC and patients’ outcome. The expression of RAD51 was assessed immunohistochemically in a well-characterised annotated series (n = 1184) of early-stage invasive BC with long-term follow-up. A subset of cases of BC from patients with known BRCA1 germline mutations was included as a control group. The results were correlated with clinicopathological and molecular parameters and patients’ outcome. RAD51 protein expression level was also assayed in a panel of cell lines using reverse phase protein array (RPPA). RAD51 was expressed in the nuclei (N) and cytoplasm (C) of malignant cells. Subcellular colocalisation phenotypes of RAD51 were significantly associated with clinicopathological features and patient outcome. Cytoplasmic expression (RAD51C+) and lack of nuclear expression (RAD51 N-) were associated with features of aggressive behaviour, including larger tumour size, high grade, lymph nodal metastasis, basal-like, and triple-negative phenotypes, together with aberrant expression of key DDR biomarkers including BRCA1. All BRCA1-mutated tumours had RAD51C+/N- phenotype. RPPA confirmed IHC results and showed differential expression of RAD51 in cell lines based on ER expression and BRCA1 status. RAD51 N+ and RAD51C+ tumours were associated with longer and shorter breast cancer-specific survival (BCSS), respectively. The RAD51 N+ was an independent predictor of longer BCSS (P<0.0001). Lack of RAD51 nuclear expression is associated with poor prognostic parameters and shorter survival in invasive BC patients. The significant associations between RAD51 subcellular localisation and clinicopathological features, molecular subtype and patients’ outcome suggest that the trafficking of DDR proteins between the nucleus and cytoplasm might play a role in the development and progression of BC

    Institutional shared resources and translational cancer research

    Get PDF
    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore