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ABSTRACT  

 

Purpose: Impaired DNA-damage response (DDR) may play a fundamental role in the 

pathogenesis of breast cancer (BC). RAD51 is key player in DNA double strand break repair. 

In this study, we aimed to assess the biological and clinical significance of RAD51 

expression with relevance to different molecular classes of BC and patients’ outcome.  

Methods: The expression of RAD51 was assessed immunohistochemically in a well-

characterised annotated series (n=1184) of early-stage invasive BC with long-term follow-up. 

A subset of cases of BC from patients with known BRCA1 germline mutations was included 

as a control group. The results were correlated with clinicopathological and molecular 

parameters and patient outcome. RAD51 protein expression level was also assayed in a panel 

of cell lines using reverse phase protein array (RPPA).  

Results: RAD51 was expressed in the nuclei (N) and cytoplasm (C) of malignant cells. 

Subcellular co-localisation phenotypes of RAD51 were significantly associated with 

clinicopathological features and patient outcome. Cytoplasmic expression (RAD51C+) and 

lack of nuclear expression (RAD51N-) were associated with features of aggressive behaviour 

including larger tumour size, high grade, lymph nodal metastasis, basal-like, and triple-

negative phenotypes, together with aberrant expression of key DDR biomarkers including 

BRCA1. All BRCA1 mutated tumours had RAD51C+/N- phenotype. RPPA confirmed IHC 

results and showed differential expression of RAD51 in cell lines based on ER expression 

and BRCA1 status. RAD51N+ and RAD51C+ tumours were associated with longer and 

shorter breast cancer specific survival (BCSS), respectively. The RAD51N+ was an 

independent predictor of longer BCSS (P<0.0001).  

Conclusions: lack of RAD51 nuclear expression is associated with poor prognostic 

parameters and shorter survival in invasive BC patients. The significant associations between 

RAD51 subcellular localisation and clinicopathological features, molecular subtype and 

patients’ outcome suggest that the trafficking of DDR proteins between the nucleus and 

cytoplasm might play a role in the development and progression of BC. 
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INTRODUCTION  

RAD51 plays a major role in homologous recombination (HR) of DNA during double strand 

break (DSB) repair. Of the various types of DNA damage that occur within a mammalian 

cell, DSB is recognised as the most lethal [1, 2]. Many studies have indicated a link between 

DSB and genomic instability and cancer [1, 3]. Repair of DSB can be achieved through one 

of two overlapping pathways: homologous recombination (HR) and non-homologous end 

joining (NHEJ) pathways [4]. The main difference between these two pathways lies in the 

requirement of a homologous DNA template during the repair process [1].  In HR, RAD51 is 

involved in the search for homology and strand pairing stages of the process. Unlike other 

proteins involved in DNA damage repair, RAD51 forms a helical nucleoprotein filament on 

DNA.  A single strand of DNA is coated by RAD51 to form a nucleoprotein filament that 

penetrates and makes pairs with a homologous region in duplex DNA, leading to the 

activation of strand exchange and the creation of a crossover between the juxtaposed DNA 

[5, 6]. Importantly, BRCA1 co-localises with RAD51 to form a complex [7, 8].  This was 

evidenced by the reduced formation of RAD51 after treatment with DNA-damaging agents 

and during HR in BRCA1-deficient cells [9]. Moreover, previous studies have demonstrated 

that HR is defective in BRCA1-deficient cells [10].  RAD51 may also be required for NHEJ 

pathway of DSB repair interacting with the single strand DNA-binding proteins such as 

BRCA2, PALB2  and RAD52 [11].  

 

Several studies have indicated that RAD51 nuclear expression is increased in metastatic 

mammary carcinoma, indicating that it may play an important role in the mammary 

carcinogenesis [12-15]. However, an increased risk of distant metastasis occurs with an 

increased cytoplasmic expression of RAD51 [16] and RAD51 nuclear foci are inversely 

associated with tumour response to chemotherapy [17].  
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The aim of this study is to investigate the expression of RAD51 in a large, well-characterised 

clinically and molecularly annotated series of early stage sporadic BC using 

immunohistochemistry to determine the association between RAD51 and clinicopathological 

and molecular features and clinical outcome. A series of BRCA mutated BC was used as a 

control group for tumours with deficient HR pathway. In addition, reverse phase protein 

assay (RPPA) was used to quantify RAD51 protein expression in cell lines representing 

different BC molecular classes.  
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MATERIALS AND METHODS 

Study Cohort 

A well-characterised cohort of unselected primary operable invasive BC (n=1,184) derived 

from the Nottingham Tenovus primary breast carcinoma series from female patients 

presenting between 1989 and 1998 formed the material of this study. In addition, a group of 

BRCA1 germline mutation carrier (n=18 cases) were also studied.  Data relating to patients’ 

clinicopathological features were available including patients’ age, menopausal status, 

primary tumour size, histological tumour type, tumour grade, axillary nodal status, 

lymphovascular invasion and Nottingham Prognostic Index (NPI) [18, 19]. Survival data 

were available and prospectively maintained, including development of locoregional, distant 

recurrences, and breast cancer related mortality. The median follow-up time of the sporadic 

BC series was 177 months (range =1-308 months) and of the BRCA1 mutated series was 93 

months (range = 9-274 months). Using these outcome data, BC specific survival (BCSS) was 

calculated, using appropriate statistical tests, as the time (in months) from the date of primary 

surgery to the time of death because of BC.  

Patients in these series were managed in accordance to a standard uniform protocol based on 

patients’ and tumour characteristics; NPI and ER status, and menopausal status [19]. Patients 

within the excellent NPI prognostic group (score ≤ 3.4) received no adjuvant therapy, but 

those patients with NPI> 3.4 received Tamoxifen if ER-positive (+/- Zoladex in case the 

patients were pre-menopausal). On the other hand, classical cyclophosphamide, methotrexate 

and 5-flurouracil (CMF) were used if the patients were ER-negative and fit to receive 

chemotherapy. 

Data on the following biomarkers were available: ER, progesterone receptor (PgR), HER-2, 

DNA damage response proteins (BRCA1, BARD1, KU70/KU80, DNA-PKcs, PIAS1, and 
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CHK1), basal cytokeratins [CK5, CK14, and CK17], and proliferation and cell-cycle 

associated proteins (Ki67, and P53). In this series, HER2 was assessed using IHC (DAKO) 

and dual-colour chromogenic in-situ hybridisation (CISH) as previously published [20]. Ki67 

labelling index (Ki67LI) was assessed on full-face tumour tissue sections and was assessed as 

the percentage of Ki67 positive cells among a total number of 1000 malignant cells at high 

power magnification (x400) [20]. Supplementary table 1 displays sources, dilution, cut-off 

point and pre-treatment conditions used of the antibodies of DNA damage sensing and repair 

markers used in this study. The staining conditions as well as data dichotomy of other 

markers in this study were defined as previously described [18-22]. This study was approved 

by Nottingham Research Ethics Committee 2.  

 

Immunohistochemistry 

Immunohistochemistry was carried out using the Novolink Kit-polymer detection system 

(Leica, Newcastle, UK).  Antigen retrieval was performed in citrate buffer solution (pH=6) 

using microwave heating for 20 minutes. Anti-RAD51 primary antibody was used (clone 

Ab88572, Abcam Ltd., Cambridge, UK) optimally diluted at 1:70 and incubated for 60 

minutes at room temperature. Freshly prepared 3-3’Diam-inobenzidine tetrahydrochloride 

(Novolink DAB substrate buffer plus) was used as a chromogen for reaction visualisation. 

The stained TMA sections were counter stained with haematoxylin for 6 minutes [22]. 

 

Scoring of RAD51 immunohistochemical staining  

High-resolution digital images (Nanozoomer; Hamamatsu Photonics, Welwyn Garden City, 

UK) scanned at x20 magnification was used to facilitate the visual scoring of the TMA cores 

via web based interface (Distiller; Slidepath, Ltd., Dublin, Ireland). Only immunostaining of 

invasive BC cells within the tissue cores was considered as positive. The semi-quantitative 
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modified histochemical score (H score) was used to assess RAD51 staining [23]. Thirty 

percent of the stained RAD51 TMA cores were re-scored by another observer and statistical 

agreement between the two scores was calculated using inter-rater Kappa statistic (Table 1). 

 

Antibody specificity and Reverse Phase Protein Microarray (RPPA) 

To test the specificity of the used antibody and to confirm the expression of RAD51 in 

specific BC cell lines corresponding to molecular classes of BC, Western blotting and RPPA 

were performed as previously described [24-26].  Four different cell lines were used; luminal 

phenotype MCF-7 cell lines (characterised by positive expression of ER and BRCA1, ATCC) 

and MDA-MB-436 (ER- and EGFR+, CLS) which were grown in RPMI1640 (Sigma, UK). 

In addition, BRCA1 deficient HeLaSilenciX® cells and control BRCA1 proficient 

HeLaSilenciX® cells (Tebu-Bio) which were grown in DMEM medium (Life Technologies). 

 

For Western blotting, the anti-RAD51 primary antibody (clone Ab88572, Abcam Ltd., 

Cambridge, UK) was used (1:1000, and incubated for 1 hour at room temperature). The 

reaction was developed using Enhanced Chemiluminescence substrate (GE Healthcare Life 

Sciences, Buckinghamshire, UK). For RPPA, RAD51 (1:100 in a reducing background 

DAKO antibody diluent).  In addition, GAPDH (BioLegend, 1:250 in the same diluent), was 

used as a house-keeping protein to control protein loading. Protein signals were determined 

with background subtraction and normalization to the internal housekeeping protein using 

RPPanalyzer, a module within the R statistical language on the CRAN (http://cran.r-

project.org/) [27]. 

Statistical Analysis 

All statistical analyses were performed using SPSS 21.0 statistical software (SPPS Inc., 

Chicago, IL, USA). For optimal RAD51 cut-off point determination, X-tile bioinformatics 

http://cran.r-project.org/
http://cran.r-project.org/
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software was used (version 3.6.1, 2003-2005, Yale University, USA) [28]. Correlations of 

categorical variables were carried out with Chi-Squared test (x2). One-way ANOVA was 

applied to compare the level of RAD51 expression among different BC classes for IHC and 

RPPA data, with pairwise differences assessment using the post-hoc test. Associations with 

patients’ outcome were assessed using Kaplan-Meier curves and log rank test. A two-sided P-

value of < 0.01 was considered statistically significant. 
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RESULTS 

Expression of RAD51 in Invasive Breast Cancer 

The specificity of RAD51 antibody was confirmed by Western blotting as demonstrated by 

single band at the correct protein size (Figure 1, panel A). Using immunohistochemistry, 

RAD51 expression was localised to nuclei and cytoplasm of the malignant cells with no 

membrane staining (Figure 1, panel II). For analytical purposes, RAD51 H-score was 

categorised using X-tile software. The cut-off points used for nuclear RAD51 expression 

positive was ≥10 H-score, and for RAD51 cytoplasmic expression was ≥80 H-score (Table 

1). Expression of RAD51 varied among BC molecular classes based on the status of BRCA1 

and hormone receptor expression (Figure 1, panel III).  There was a strong expression of 

nuclear RAD51 in the sporadic ER positive and BRCA1 positive class compared to ER 

negative and BRCA1 negative sporadic and hereditary BC classes (P<0.0001 and P=0.0001, 

respectively).  

 

Association between RAD51 and clinicopathological features 

Sub-cellular expression of RAD51 was distinctively associated with clinicopathological 

features: cytoplasmic expression was positively associated while nuclear expression was 

negatively associated with features characteristics of aggressive behaviour. Therefore, further 

analyses were carried out following classification of BC based on subcellular co-localisation 

into four groups: double negative expression group [cytoplasmic (C) and nuclear (N) 

negative, (C-/N-), 6.1%, double positive (C+/N+), 29.8%, and single positive expression 

groups (C+/N- and  C-/N+), 59.4% and 4.7%, respectively.  RAD51 combinatorial expression 

showed significant associations with poor prognostic features such as larger tumour size, 

higher grade with  nuclear pleomorphism, and frequent mitotic figures (Table 1, P<0.0001). It 
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was observed that up to 75% of RAD51 C+/N- group were of large tumour size (> 2 cm) and 

of grade 3 tumours.   

 

Association of RAD51 expression and expression of other biomarkers 

Table 2 summarises the associations between RAD51 subcellular co-localisation groups and 

other key DNA-damage repair markers. The RAD51C+/N- phenotype showed significant 

association with lack of nuclear and positive cytoplasmic expression of DNA-DSB 

biomarkers BRCA1, γH2AX, CHK1 and MTA1, cytoplasmic expression of BARD1 and 

SMC6L1 and expression of CHK2, ATM, PTEN, the BRCA1 inhibitor ID4 and the NHEJ 

biomarkers KU70/KU80 and DNA-PKcs regardless of their subcellular localisation.  

 

The association between RAD51 subcellular localisation combinatorial groups and other 

tissue biomarkers is summarised in Table 3 where RAD51C+/N- subgroup showed significant 

association with lack of hormone receptor (ER- and PgR-), triple negative and basal-like 

(BLBC+) phenotypes, Ck5/6+, and high Ki67LI (P<0.0001). In addition, RAD51 showed 

significant association with the cell cycle progression/arrest regulator markers P53 and P27 

(P<0.0001). Furthermore, There was a significant association between the nucleocytoplasmic 

transport marker KPNA2 expression and RAD51C+/N- (P<0.0001).  

 

Expression of RAD51 in Cell Lines by Reverse Phase Protein Microarray 

Figure 4 displays the expression of RAD51 in different cell lines using RPPA. RPPA showed 

results consistent with RAD51 nuclear expression by IHC and demonstrated a significantly 

higher level of expression of RAD51 in the HeLa BRCA1 control (BRCA1+ wild type) and 

MCF-7 cell lines (ER+, BRCA1+), when compared with the BRCA1 deficient HeLa, or MDA-

MB-436 (ER- & BRCA1-) cell lines.  
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Relationship between RAD51 and patient outcome  

Negative nuclear expression of RAD51 demonstrated significantly shorter BCSS (P<0.01) 

with a 67% ten-years survival rate compared to 82% in the RAD51 nuclear positive cases, 

Figure 2A. Cytoplasmic expression (RAD51C+) showed a trend for shorter BCSS (P=0.02, 

Figure 2B). Furthermore, the RAD51C+/N- phenotype had the shortest BCSS, in comparison 

with other subcellular combinations (Figure 2C; RAD51C+/N+, RAD51C-/N- and RAD51C-

/N+, P<0.01). In regards to chemotherapy, patients with RAD51N+ tumours who did not 

receive adjuvant chemotherapy showed the best BCSS (P=0.02), whereas the other groups 

were not significantly different from each other, Figure 3. Within the primary invasive BC 

series, cox proportional hazard regression analyses for predictors of BCSS showed that 

RAD51N+ was an independent predictor of longer BCSS (P <0.01, hazard ratio (HR), 0.73, 

95% confidence interval (CI) = 0.56-0.96). However, at the RAD51 nucleocytoplasmic 

expression groups showed non- significant association with survival (P = 0.08, HR = 1.18, 

95% CI = 0.98-1.42), Table 4. 
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DISCUSSION  

The mechanisms of DNA damage repair play a crucial role in the maintenance of DNA 

integrity to ensure high-fidelity transmission of genetic information. Therefore, inability to 

respond or repair DNA damage leads to genetic instability and enhancement of cancer 

development [1, 2]. The deficiencies in HR pathway, with BRCA1 and RAD51 as key 

markers, result in a marked increase in the risk of early onset of breast, ovarian and other  

cancers [29].  RAD51 is essential for genetic recombination and DNA repair as it has the 

ability to promote joint molecule formation and DNA strand exchange between homologous 

DNA molecules [6, 30, 31]. RAD51 binds to DNA forming highly ordered nucleoprotein 

filaments in which the DNA is encased within a protein sheath [32]. 

 

In this study the role of RAD51, with particular attention to DDR and patients’ outcome, was 

evaluated using immunohistochemistry in a large clinically annotated series of unselected 

early-stage sporadic BC cases and a small cohort of BRCA1 germline mutation BC cases.. 

Our results showed that the expression of RAD51 is both nuclear and cytoplasmic and it 

varies among BC molecular classes based on the status of BRCA1 and hormone receptor 

expression with low nuclear expression observed in BRCA1-assoicated tumours and in 

sporadic tumours lacking ER and BRCA1 expression.  Low levels of nuclear RAD51 were 

associated with established poor prognostic factors, such as high histological grade, TN 

phenotype and shorter patients’ survival; findings reported by other investigators [33].  

 

Our results also indicate that tumours lacking nuclear RAD51 overexpress other proteins 

involved in the alternative DDR pathways including NHEJ as supported by the high level of 

expression of NHEJ proteins KU70/KU80 and DNA-PKcs.  Consistent with a previous study 

[34], the IHC results of RAD51 in our series of BC confirmed a direct relationship between 
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high cytoplasmic RAD51 expression and TN status, while the opposite was observed with 

RAD51 nuclear expression. This finding suggests the possible role of steroid hormone 

receptors in the regulation of RAD51 [35]. Pedram and co-workers reported an inhibition of 

ATR signalling by oestradiol (E2), which produced a delay in the formation of RAD51 

nuclear foci following UV-irradiation [36]. Overall, absence of steroid hormone receptors 

may be a surrogate marker of E2/ER signalling, which may directly influence the DNA-DSB 

repair pathway [37, 38].  

 

Interestingly, in the results presented herein, a comparison of the RAD51 nuclear and 

cytoplasmic expression arising within BRCA1 mutation carriers showed high levels of 

cytoplasmic RAD51. This supports the hypothesis that nuclear levels of RAD51 may be 

lower due to the mutation of BRCA1, which might inhibit the protein transfer into the 

nucleus.  This observation has previously been reported in prostate cancer [39].  RAD51 is 

similar to other DDR proteins where its cytoplasmic sequestration seems to represent lack of 

functional phenotype [40]. Our findings demonstrate the importance of the 

nucleocytoplasmic transport protein KPNA2 on the subcellular localisation of RAD51. High 

level of KPNA2 nuclear expression is associated with cytoplasmic localisation of RAD51. 

Although KPNA2 is a nuclear import protein [41, 42], high nuclear accumulation of KPNA2 

leads to cytoplasmic retention of nuclear localisation sequence (NLS)-containing cargo 

proteins due to defective import [43]. RAD51 cyto-nuclear transport is an essential aspect of 

the cellular response to DNA damage [44].  Nuclear localisation of KPNA2 in cancer is 

thought to be due to cellular stress and some authors have demonstrated that the nuclear 

retention of KPNA2 in response to cellular stress suppresses the nuclear import [45]. 
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In cancer cell lines with a HR defect, such as BRCA1 or BRCA2 loss, the cells are unable to 

stimulate foci of RAD51 following DNA damage [33, 46] leading to a functional readout of a 

defect in HR. in this study, for quantitative expression of RAD51 in relation to molecular 

class of BC and other DDR proteins, RAD51 was assessed in different BC cell lines using 

RPPA. The results obtained by IHC and RPPA revealed lower levels of RAD51 in the HeLa 

BRCA1 cell line (BRCA1 deficient), or known BRCA1 mutation BC cases/ER- BC, than the 

control HeLa BRCA1 cell line (BRCA1 proficient) or sporadic BC showing positive BRCA1 

and ER. This finding may propose a defect in the HR pathway in BRCA1 mutation cases/or 

ER negative sporadic BC. The RPPA findings were in line with the nuclear RAD51 IHC 

expression, although RRPA picked up both cytoplasmic and nuclear expression. This 

highlights the advantage of determining the subcellular localisation as assessed by IHC. 

 

The link between loss of PTEN and defective DNA-DSB repair has been previously studied. 

PTEN works on chromatin and controls the expression of RAD51, which usually decreases 

the incidence of spontaneous DSBs. Accordingly, PTEN-deficient cells have defective DNA-

DSB repair, possibly due to loss or down regulation of RAD51, in addition to loss of PTEN 

at centromeres [47].  In the present study, RAD51C+/N- expression localisation was 

associated with loss of PTEN. These findings may indicate a role for PTEN involvement in 

HR of DNA repair.  

 

Both CHK1 and CHK2 are essential kinases for the repair of DNA and are important in the 

recruitment of the functional associations between BRCA1 and RAD51 proteins; thus, they 

increase the HR-mediated repair of stalled replication forks [48]. CHK1 phosphorylates 

RAD51 and other proteins, such as FANCD2, in order to promote the repair pathways of 

DNA [49]. In this study, there was a significant positive association between CHK1N, but not 
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cytoplasmic expression, and RAD51N expression. Moreover, nuclear CHK2 expression 

showed a positive association with the cytoplasmic and a negative association with the 

RAD51 nuclear expression. Cases exhibiting low nuclear CHK1 and high cytoplasmic 

expression or CHK2 might hypothetically have a deficiency in response to DNA damage, 

leading to a further aggressive tumour. Bahassi et al investigated the functional associations 

between BRCA2 and RAD51 in response to DNA damage and its regulation by CHK1 or 

CHK2. In UV-treated cells, the CHK1 depletion from cells using siRNA produces a complete 

loss of RAD51 localisation to nuclear foci with subsequent replication block [50]. 

Conversely, cells of truncated and non-functional CHK2 have no obvious defect in 

localisation at the foci of RAD51, suggesting that CHK1 is a key member in controlling 

BRCA2–RAD51 interaction in response to replication block. Cells lacking CHK2 display a 

noticeable impairment in RAD51 localisation instantly after DNA-DSB, as induced by 

ionising radiation treatment [50]. 

 

Nuclear over-expression of RAD51 protein in patients treated with adjuvant chemotherapy 

was associated with a shorter BCSS compared to those who did not receive chemotherapy. In 

line with these findings, it has been reported that the formation of RAD51 foci in response to 

DNA damage is related to the response to neoadjuvant anthracycline-based chemotherapy in 

BC [33]. This could be explained by the ability of the chemotherapeutic agents to bind to 

DNA producing cross-links in addition to triggering cell death through the induction of DSBs 

[51]. This could suggest that a defect in the HR pathway may be responsible for failure to 

repair damage caused by these agents, with subsequent activation of the error-prone backup 

NHEJ pathways to repair DNA [52-54].  

 

 



16 

 

CONCLUSIONS: 

The significant associations between RAD51 subcellular localisation and clinicopathological 

and molecular features and outcome suggest that the cyto-nuclear trafficking of DDR proteins 

might play a role in BC development and progression. Differential expression of RAD51 

based on hormone receptor and BRCA1 status as observed using IHC is noted in both 

sporadic and hereditary BC and is demonstrated on cell lines using RPPA.  Investigating 

large panel of biomarkers involved in the different pathways of DDR is likely to improve our 

understanding of the complex DDR mechanisms in BC. 
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Figure legends: 
Figure 1: Western blotting and Immunohistochemical study. I): Testing the specificity of 

Rad51 antibody by Western Blot in MCF-7 cell line. II) Immunohistochemical expression of Rad51, A) 

Negative expression in invasive ductal/NST breast cancer case B): Positive cytoplasmic and nuclear expression 

in invasive NST BC case, and C); a case of invasive ductal carcinoma/NST showing nuclear Rad51 expression; 

all at magnification x200. III): Rad51 protein level detected by IHC in breast cancer on TMA. Each bar 

represents different class based on hereditary or sporadic BRCA1 and ER status. n= nuclear and c= cytoplasmic 

expression. Error bars represent Mean (SD) and was created on H-score (ranges 0-300). A= sporadic cases [ER-

& BRCA1-] vs. sporadic cases [ER+& BRCA1+], B= sporadic cases [ER-& BRCA1-] vs. Hereditary cases [ER-], 

C= sporadic cases [ER-& BRCA1-]vs. Hereditary cases [ER+], D= sporadic cases [ER+& BRCA1+]vs. 

Hereditary cases [ER-], E= sporadic cases [ER+& BRCA1+] vs. Hereditary cases [ER+], and F= Hereditary cases 

[ER-] vs. Hereditary cases [ER+].  ANOVA test was used for each marker within the classes.   

 

Figure 2: The association between Rad51 and BCSS. 0= negative and 1= positive expression of 

Rad51. Where n= nuclear expression and c= cytoplasmic expression of Rad51 and N; number of cases. Only 

patients who died from breast cancer were considered. A; association between nuclear expression of Rad51 and 

BCSS, whereas B; association between cytoplasmic Rad51 and BCSS. C; co-expression of nuclear and 

cytoplasmic of Rad51and its association with BCSS.   

 

Figure 3: The association between Rad51 and BCSS and the effect of treatment on 

patient outcome. N: number of cases. Only patients died from breast cancer were considered. A: association 

between nuclear expression of Rad51 and BCSS based on chemotherapy in unselected cases and B: cytoplasmic 

expression of Rad51 and BCSS based on chemotherapy in unselected cases. C: nuclear expression of Rad51 and 

BCSS based on receiving/or not endocrine therapy in only ER-positive cases. D: cytoplasmic expression of 

Rad51 and BCSS based on receiving/or not endocrine therapy in only ER-positive cases.  

 

Figure 4: Rad51 protein level detected by reverse phase protein microarray in different 

breast cancer cell lines. BRCA1 deficient HeLaSilenciX® cells and its control [BRCA1 and BRCA1.C 

respectively], MCF-7 and MDA-MB-436 (436) cells) were grown and lysed. Lysates were spotted onto 

nirocelulosed slides in duplicates using microarrayer. The slide was probed for RAD51 and GAPDH. Images of 

scanned nitrocellulose slides printed with extracted protein from cell lines and probed with the antibodies 

against the Rad51 and GAPDH. Five 2-fold dilutions of each sample were printed in duplicate. Background was 

subtracted and the intensity of each spot was normalised to its corresponding GAPDH level. Each (R) represents 

different passage of each sample; three different passages of each sample were used. Error bars represent Mean 

(SD). A= BRCA1 vs. BRCA1.C, B= BRCA1 vs. MDA-MB-436, C= BRCA1 vs. MCF-7, D= BRCA1.C vs. 

MDA-MB-436, E= BRCA1.C vs. MCF-7, and F= MDA-MB-436 vs. MCF-7. 

 

 

 

 

 

 

Table legends:  
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Table 1: Relationship between RAD51 co-localisation expression groups and clinico-

pathological parameters of the studied series. 

 

Table 2: Associations between RAD51 co-localisation expression groups and DNA-damage 

repair biomarkers. 

 

Table 3: Associations between RAD51 and the IHC expression of other biomarkers. 

 

 

Table 4: Cox proportional hazards regression analyses for predictors of BCSS for RAD51 

nuclear expression and RAD51 nucleocytoplasmic expression groups with other co-variables:   

 

Supplementary Table 1: Sources, dilution, cut-offs point and pre-treatment conditions used of 

the antibodies of DNA damage sensing and repair markers used in this study 

 

 

 

 

 

 

 

 



Table 1: Relationship between RAD51 co-localisation expression groups and clinico-

pathological parameters of the studied series:  

Parameters 
RAD51 

C- N- 

N (%) 

C+ N+ 

N (%) 
C+ N- 

N (%) 
C- N+ 

N (%) 
X2 P 

Tumour size 
≤ 2 cm 30 (41.7) 138 (39.8) 177 (25.7) 19 (34.5) 

25.5 <0.0001 
>2 cm 42 (58.3) 209 (60.2) 512 (74.3) 36 (65.5) 

Tumour grade 
1 14 (19.4) 67 (19.3) 47 (6.7) 9 (16.4) 

139.8 <0.0001 2 31 (43.1) 129 (37.1) 139 (19.9) 32 (58.2) 

3 27 (37.5) 152 (43.7) 513 (73.4) 14 (25.5) 

    Tubules 
1 3 (4.5) 21 (6.2) 14 (2) 1 (1.9) 

44.6 <0.0001 2 29 (43.3) 117 (34.6) 160 (23.4) 24 (44.4) 

3 35 (52.2) 200 (59.2) 509 (74.5) 29 (53.7) 

    Pleomorphism 
1 1 (1.5) 9 (2.7) 1 (0.1) 0 

104.5 <0.0001 2 32 (47.8) 142 (42.1) 139 (20.4) 32 (59.3) 

3 34 (50.7) 186 (55.2) 541 (79.4) 22 (40.7) 

    Mitosis 
1 28 (41.8) 135 (39.9) 117 (17.1) 25 (46.3) 

104.4 <0.0001 2 16 (23.9) 65 (19.2) 120 (17.6) 16 (29.6) 

3 23 (34.3) 138 (40.8) 446 (65.3) 13 (24.1) 

Axillary nodal 

stage 

1 44(61.1) 217(62.4) 402(57.7) 35(63.6) 

4.3 0.643 2 20(27.8) 102(29.3) 220(31.6) 17(30.9) 

3 8(11.1) 29(8.3) 75(10.8) 3(5.5) 

NPI 

Excellent 9 (12.5) 45 (13.1) 28 (4) 7 (12.7) 

110.6 <0.0001 

Good 22 (30.6) 80 (23.3) 61 (8.8) 14 (25.5) 

Moderate 1 16 (22.2) 94 (27.3) 250 (36) 17 (30.9) 

Moderate 2 16 (22.2) 83 (24.1) 205 (29.5) 16 (29.1) 

Poor 6 (8.3) 33 (9.6) 109 (15.7) 1 (1.8) 

Very poor 3 (4.2) 9 (2.6) 41(5.9) 0 

Tumour type 

Invasive Ductal/NST 35 (49.3) 188 (54.7) 535 (77.3) 17 (31.5) 

137.6 <0.0001 

Invasive Lobular 8 (11.3) 24 (7.0) 20 (2.9) 13 (24.1) 

Medullary-like 1 (1.4) 5 (1.5) 21 (3) 0 

Mixed+ 21 (29.6) 109 (31.7) 98 (14.2) 22 (40.7) 

Other++ 6 (8.5) 18 (5.2) 18 (2.6) 2 (3.7) 

N= number of cases. c. = cytoplasmic, n. = nuclear expression. + Lobular or tubular mixed BCs. ++ Mucinous, Alveolar Lobular, 

Miscellaneous including Metaplastic, Adenoid Cystic, Spindle, and Tubulolobular. NST= No Special Type. NPI= Nottingham 
Prognostic Index.  

 



Table 2: Associations between RAD51 co-localisation expression groups and DNA-

damage repair biomarkers. 

RAD51 

Parameters 
C- N- 

N (%) 

C+ N+ 

N (%) 

C+ N- 

N (%) 

C- N+ 

N (%) 
X2 P 

BRCA1 N 
Negative 22 (45.8) 90 (32.6) 417 (71.2) 9 (19.6) 

143.5 <0.0001 
Positive 26 (54.2) 186 (67.4) 169 (28.8) 37 (80.4) 

BRCA1 C 
Negative 33 (68.8) 171 (62.2) 315 (53.9) 34 (73.9) 

13.2 0.005 
Positive 15 (31.2) 104 (37.8) 269 (46.1) 12 (26.1) 

KU70/KU80 
Negative 24 (36.9) 24 (7.5) 58 (9.7) 11 (23.4) 

55.0 <0.0001 
Positive 41 (63.1) 294 (92.5) 542 (90.3) 36 (76.6) 

DNA-PKcs 
Negative 13 (31) 24 (10.5) 82 (16.5) 1 (4) 

15.3 0.002 
Positive 29 (69) 205 (89.5) 414 (83.5) 24 (96) 

SMC6L1 C 
Negative 26 (55.3) 84 (34.7) 131 (26.4) 8 (28.6) 

19.5 <0.0001 
Positive 21 (44.7) 158 (65.3) 365 (73.6) 20 (71.4) 

SMC6L1 N 
Negative 17 (36.2) 75 (31) 171 (34.5) 5 (17.9) 

4.2 0.3 
Positive 30 (63.8) 167 (69) 325 (65.5) 23 (82.1) 

BARD1 C 
Negative 12 (26.7) 23 (9.5) 148 (27.9) 3 (8.8) 

37.0 <0.0001 
Positive 33 (73.3) 218 (90.5) 383 (72.1) 31 (91.2) 

BARD1 N 
Negative 42 (93.3) 211 (87.6) 492 (92.7) 32 (97) 

7.1 0.07 
Positive 3 (6.7) 30 (12.4) 39 (7.3) 1 (3) 

ID4 C 
Negative 41 (57.7) 113 (32.3) 236 (34.3) 24 (43.6) 

19.2 <0.0001 
Positive 30 (42.3) 237 (67.7) 452 (65.7) 31 (56.4) 

PTEN 
Negative 27 (69.2) 151 (76.3) 250  (89) 14 (53.8) 

31.1 <0.0001 
Positive 12 (30.8) 47 (23.7) 31 (11) 12 (46.2) 

CHK1 N 
Negative 50 (73.5) 190 (60.5) 518 (85.6) 18 (35.3) 

114.4 <0.0001 
Positive 18 (26.5) 124 (39.5) 87 (14.4) 33 (64.7) 

CHK1 C 
Negative 18 (26.5) 21 (6.7) 37 (6.1) 15 (29.4) 

61.0 <0.0001 
Positive 50 (73.5) 292 (93.3) 568 (93.9) 36 (70.6) 

CHK2 
Negative 20 (52.6) 88 (43.3) 191 (60.8) 8 (32) 

20.1 <0.0001 
Positive 18 (47.4) 115 (56.7) 123 (39.2) 17 (68) 

ATM 
Negative 20 (64.5) 98 (44.7) 311 (62.8) 13 (37.1) 

27.3 <0.0001 
Positive 11 (35.5) 121 (55.3) 184 (37.2) 22 (62.9) 

γH2AX N 

 

Negative 4 (11.1) 8 (3.6) 93 (19.2) 1 (3.7) 
34.2 <0.0001 

Positive 32 (88.9) 217 (96.4) 392 (80.8) 26 (96.3) 

γH2AX C 
Negative 8 (22.2) 24 (10.7) 37 (7.6) 7 (25.9) 

17.0 0.001 
Positive 28 (77.8) 201 (89.3) 448 (92.4) 20 (74.1) 

MTA1 N 

 

Negative 19 (46.3) 82 (34) 250 (48.2) 10 (30.3) 
16.1 0.001 

Positive 22 (53.7) 159 (66) 269 (51.8) 23 (69.7) 

MTA1 C 
Negative 15 (35.7) 26 (10.8) 63 (12.1) 9 (27.3) 

25.2 <0.0001 
Positive 27 (64.3) 215 (89.2) 456 (87.9) 24 (72.7) 

N= number of cases. C = cytoplasmic, and N = nuclear expression. 

 



Table 3: Associations between RAD51 and the IHC expression of other biomarkers 

 

Biomarkers 

RAD51 

C- N- 

N (%) 

C+ N+ 

N (%) 

C+ N- 

N (%) 

C- N+ 

N (%) 
X2 P 

ER 
Negative 23 (33.3) 81 (24.4) 387 (56.7) 5 (9.4) 

126.5 <0.0001 
Positive 46 (66.7) 251 (75.6) 295 (43.3) 48 (90.6) 

PgR 
Negative 30 (46.9) 127 (38.7) 426 (65.4) 6 (12.5) 

100.4 <0.0001 
Positive 34 (53.1) 201 (61.3) 225 (34.6) 42 (87.5) 

Triple Negative 
Negative 52 (78.8) 284 (86.3) 397 (60.5) 49 (94.2) 

88.3 <0.0001 
Positive 14 (21.2) 45 (13.7) 259 (39.5) 3 (5.8) 

CK5/6 
Negative 46 (86.8) 235 (83.9) 376 (67.5) 41 (95.3) 

42.2 <0.0001 
Positive 7 (13.2) 45 (16.1) 181 (32.5) 2 (4.7) 

CK17 
Negative 51 (94.4) 215 (84.6) 463 (79.3) 36 (90) 

11.5 0.009 
Positive 3 (5.6) 39 (15.4) 121 (20.7) 4 (10) 

BLBC 
Negative 49 (87.5) 278 (88) 406 (68.1) 45 (93.8) 

58.0 <0.0001 
Positive 7 (12.5) 38 (12) 190 (31.9) 3 (6.2) 

P53 
Negative 47 (75.8) 233 (71) 370 (55.1) 40 (80) 

37.0 <0.0001 
Positive 15 (24.2) 95 (29) 302 (44.9) 10 (20) 

Ki67 
Negative 32 (55.2) 139 (50) 149 (24.1) 22 (53.7) 

77.2 <0.0001 
Positive 

26 (44.8) 
 

139 (50) 
 

469 (75.9) 
 

19 (46.3) 
 

P27 

 

Negative 12 (44.4) 34 (28.6) 203 (59.2) 8 (34.8) 
36.1 <0.0001 

Positive 15 (55.6) 85 (71.4) 140 (40.8) 15 (65.2) 

KPNA2 
Negative 35 (71.4) 121 (54.0) 20 (64.5) 187 (37.4) 

37.9 <0.0001 
Positive 14 (28.6) 103 (46.0) 11 (35.5) 313 (62.6) 

N= number of cases. C = cytoplasmic, N = nuclear expression. ER=estrogen receptor, PgR= Progesterone receptor, triple negative 
(ER-, PgR- and HER2-). BLBC= basal-like breast cancer defined as triple negative and positive expression of CK5 and/or CK14 

and/or CK17.  The cut off points of positivity were the same as previously published [21] 

 



Table 4: Cox proportional hazards regression analyses for predictors of BCSS for RAD51 nuclear 

expression and RAD51 nucleocytoplasmic expression groups with other co-variables:   

 

 

 

 

Parameters 

 

P-value 

 

Hazard Ratio (HR) Parameters 

 

P-value 

 

Hazard Ratio  

HR 
95% CI 

 

 

HR 95% CI 

 Lower  Upper  
 

 Lower Upper 

RAD51 N 0.004 0.733 0.559 0.960 RAD51N/C 0.08 1.183 0.980 1.428 

Tumour  

Size 
0.022 1.465 1.057 2.032 

Tumour  

Size 
0.017 1.491 1.075 2.067 

Tumour  

Grade 
<0.0001 1.923 1.536 2.408 

Tumour  

Grade 
<0.0001 1.992 1.590 2.495 

Tumour  

Stage 
<0.0001 2.133 1.775 2.562 

Tumour  

Stage 
<0.0001 2.126 1.767 2.557 

Chemo- 

therapy  
0.008 0.632 0.450 0.887 

Chemo- 

therapy 
0.007 0.621 0.440 0.877 

Endocrine 

therapy 
0.011 0.734 0.577 0.933 

Endocrine 

therapy 
0.004 0.702 0.550 0.896 



Supplementary table 1: Sources, dilution, cut-off points and pre-treatment conditions used of the 

primary antibodies used in this study: 

 
 

Antibody  
 

Clone 
 

Source 
Dilution 

IHC 
Dilution 

W.B 

RPPA 
Cellular 

localisation 
 

Cut-off point 
DNA damage sensors and signal transducers  

ATM  Ab 32420  Abcam  1:100 
overnight  

1:1,000  
1:500  

Nuclear  ≥75%  

CHK1 (phospho S345)  Ab58567  Abcam  1:150 1h  1:1,000  

1:6,000  

Nuclear/cytoplasmic  H-score ≥20 for nuclear, and ≥80 

for cytoplasmic.   

CHK2  Ab 47433  Abcam  1:100 1h  1:500  
1:6,000  

Nuclear  Median.(H-score ≥105)  

γH2AX (phospho S139)  Ab22551  Abcam  1:600 1h  1:2,000  

1:1000  

Nuclear/cytoplasmic  H-score ≥40 for nuclear, and  ≥120 

for cytoplasmic.   

Homologous recombination DNA repair markers 
BARD1  NBP1-

19636  

Novus 

Biologicals  

1:50 1h  NT  

1:200  

Nuclear/cytoplasmic  H-score >0 for nuclear. And ≥130 

for cytoplasmic  

SMC6L1  AB57759  Abcam  1:100 1h  1:1,000  
1:250  

Nuclear/cytoplasmic  H-score >240 for nuclear, and 
≥230 for cytoplasmic.  

Non homologous end joining DNA repair markers 

KU70/KU80  Ab3108 Abcam 1:2500 1h  1:1,000  

1:500  

Nuclear  ≥90 H-score.  

DNA-PK  3H6 Cell 
signalling  

1:28 1h  1:2,000  
1:150  

Nuclear  ≥150 H-score.  

BRCA1 Down Regulators Proteins 

MTA1  Ab84136 Abcam 1:200 1h  NT  

NT  

Nuclear/cytoplasmic  H-score ≥50 for nuclear and ≥120 

for cytoplasmic  

ID4  Ab77345 Abcam 1:100 1h  NT  

NT  

Nuclear/cytoplasmic  H-score ≥12 for nuclear and ≥100 

for cytoplasmic.  

Tumour Suppressor proteins   
 

PTEN  MMAC1 

Ab-4 (Clone 

17.A) 

Thermo-

scientific  

1:501h  NT  

1:500  

Nuclear  H-score ≥1  

- All the antibodies were pre-treated in citrate antigen retrieval pH=6.0 in microwave for 20 minutes and stained on TMA. NT= not tested. IHC= 
immunohistochemistry. WB= western blot. RPPA= Reverse Phase Protein Microarray.  

- The Novolink™ Max Polymer Detection System from Leica Biosystems (Leica, Newcastle, UK) was used as a detection kit for all these 

antibodies.  

  
 
 
 
 
 










