386 research outputs found
Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1
<p><b>Background:</b> The three sub-species of <i>Trypanosoma brucei</i> are important pathogens of sub-Saharan Africa. <i>T. b. brucei</i> is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. <i>T. b. rhodesiense</i> and <i>T. b. gambiense</i> are able to resist lysis by TLF. There are two distinct sub-groups of <i>T. b. gambiense</i> that differ genetically and by human serum resistance phenotypes. Group 1 <i>T. b. gambiense</i> have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 <i>T. b. gambiense</i> are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (<i>HpHbR</i>)) gene. Here we investigate if this is also true in group 2 parasites.</p>
<p><b>Methodology:</b> Isogenic resistant and sensitive group 2 <i>T. b. gambiense</i> were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the <i>HpHbR</i> gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to <i>T. b. brucei</i>. Both resistant and sensitive group 2, as well as group 1 <i>T. b. gambiense</i>, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.</p>
<p><b>Conclusions:</b> Our data indicate that, despite group 1 <i>T. b. gambiense</i> avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 <i>T. b. gambiense</i> is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 <i>T. b. gambiense</i> variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of <i>HpHbR</i>. Thus there are differences in the mechanism of human serum resistance between <i>T. b. gambiense</i> groups 1 and 2.</p>
Facial expressions depicting compassionate and critical emotions: the development and validation of a new emotional face stimulus set
Attachment with altruistic others requires the ability to appropriately process affiliative and kind facial cues. Yet there is no stimulus set available to investigate such processes. Here, we developed a stimulus set depicting compassionate and critical facial expressions, and validated its effectiveness using well-established visual-probe methodology. In Study 1, 62 participants rated photographs of actors displaying compassionate/kind and critical faces on strength of emotion type. This produced a new stimulus set based on N = 31 actors, whose facial expressions were reliably distinguished as compassionate, critical and neutral. In Study 2, 70 participants completed a visual-probe task measuring attentional orientation to critical and compassionate/kind faces. This revealed that participants lower in self-criticism demonstrated enhanced attention to compassionate/kind faces whereas those higher in self-criticism showed no bias. To sum, the new stimulus set produced interpretable findings using visual-probe methodology and is the first to include higher order, complex positive affect displays
A novel application of motion analysis for detecting stress responses in embryos at different stages of development.
Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM
The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis
<p><b>Background:</b> <i>Trypanosoma brucei gambiense</i> is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a <i>T. b. brucei</i> isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between <i>T. b. gambiense</i> and the reference genome. We sought to identify features that were uniquely associated with <i>T. b. gambiense</i> and its ability to infect humans.</p>
<p><b>Methods and findings:</b> An improved high-quality draft genome sequence for the group 1 <i>T. b. gambiense</i> DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with <i>T. b. brucei</i> showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in <i>T. b. gambiense</i> DAL 972. A comparison of the variant surface glycoproteins (VSG) in <i>T. b. brucei</i> with all <i>T. b. gambiense</i> sequence reads showed that the essential structural repertoire of VSG domains is conserved across <i>T. brucei</i>.</p>
<p><b>Conclusions:</b> This study provides the first estimate of intraspecific genomic variation within <i>T. brucei</i>, and so has important consequences for future population genomics studies. We have shown that the <i>T. b. gambiense</i> genome corresponds closely with the reference, which should therefore be an effective scaffold for any <i>T. brucei</i> genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in <i>T. b. brucei</i>, no <i>T. b. gambiense</i>-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.</p>
Spatial Models of Abundance and Habitat Preferences of Commerson’s and Peale’s Dolphin in Southern Patagonian Waters
Funding: This research was possible with the support of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Funding for travel to and accommodation for NAD in Aberdeen, Scotland was provided by CONICET and Cetacean Society International. The work of NAD was part of a postdoctoral fellowship funded by CONICET. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Effects of ecosystem protection on scallop populations within a community-led temperate marine reserve
This study investigated the effects of a newly established, fully protected marine reserve on benthic habitats and two commercially valuable species of scallop in Lamlash Bay, Isle of Arran, United Kingdom. Annual dive surveys from 2010 to 2013 showed the abundance of juvenile scallops to be significantly greater within the marine reserve than outside. Generalised linear models revealed this trend to be significantly related to the greater presence of macroalgae and hydroids growing within the boundaries of the reserve. These results suggest that structurally complex habitats growing within the reserve have substantially increased spat settlement and/or survival. The density of adult king scallops declined threefold with increasing distance from the boundaries of the reserve, indicating possible evidence of spillover or reduced fishing effort directly outside and around the marine reserve. However, there was no difference in the mean density of adult scallops between the reserve and outside. Finally, the mean age, size, and reproductive and exploitable biomass of king scallops were all significantly greater within the reserve. In contrast to king scallops, the population dynamics of queen scallops (Aequipecten opercularis) fluctuated randomly over the survey period and showed little difference between the reserve and outside. Overall, this study is consistent with the hypothesis that marine reserves can encourage the recovery of seafloor habitats, which, in turn, can benefit populations of commercially exploited species, emphasising the importance of marine reserves in the ecosystem-based management of fisheries
Connectivity of larval stages of sedentary marine communities between hard substrates and offshore structures in the North Sea
Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001–2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …
