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Abstract
Commerson’s dolphins (Cephalorhynchus c. commersonii) and Peale’s dolphins (Lagenor-

hynchus australis) are two of the most common species of cetaceans in the coastal waters

of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN,

mainly due to the lack of information about population sizes and trends. The goal of this

study was to build spatially explicit models for the abundance of both species in relation to

environmental variables using data collected during eight scientific cruises along the Pata-

gonian shelf. Spatial models were constructed using generalized additive models. In total,

88 schools (212 individuals) of Commerson’s dolphin and 134 schools (465 individuals) of

Peale’s dolphin were recorded in 8,535 km surveyed. Commerson’s dolphin was found less

than 60 km from shore; whereas Peale’s dolphins occurred over a wider range of distances

from the coast, the number of animals sighted usually being larger near or far from the

coast. Fitted models indicate overall abundances of approximately 22,000 Commerson’s

dolphins and 20,000 Peale’s dolphins in the total area studied. This work provides the first

large-scale abundance estimate for Peale’s dolphin in the Atlantic Ocean and an update of

population size for Commerson’s dolphin. Additionally, our results contribute to baseline

data on suitable habitat conditions for both species in southern Patagonia, which is essen-

tial for the implementation of adequate conservation measures.
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Introduction

Commerson’s dolphin Cephalorhynchus c. commersonii and Peale’s dolphin Lagenorhynchus
australis are two of the most common small cetaceans inhabiting coastal waters of the south-
west South Atlantic Ocean [1–3]. With a geographic distribution restricted to southern South
America, both taxa co-occur along the Patagonian shelf, mainly from Golfo San Jorge (44°S) to
Tierra del Fuego (56°). Commerson’s dolphin has been reported along the Atlantic coasts from
about 41°300S° to near Cape Horn (56°S), as well as from the central and eastern Strait of
Magellan and the Malvinas (Falkland) Islands [1, 4]. It inhabits shallow waters of the continen-
tal shelf (where tidal amplitudes are large) as well as areas near and within the mouths of rivers,
bays and estuaries [1]. Peale’s dolphin is found along both coasts of South America, from 33°S
on the Pacific [5] and from 38°S, including the Malvinas (Falkland) Islands and the Namun-
curá (Burdwood) Bank, on the Atlantic to south of Cape Horn (59°S). However, sightings are
more numerous from Valdivia in Chile (38°S) and within the waters of the Golfo San Jorge in
Argentina to the south of Tierra del Fuego [2, 6, 7]. It occurs in two different habitats within its
distributional range: 1) protected channels and fjords in southern Chile and 2) shallow conti-
nental shelves in the northern portion of its distribution in Chile and throughout most its
range in Argentina [6, 8].

Similarly to other coastal small cetaceans, these species face various threats, many of them
related to anthropogenic activities. Commerson’s dolphin is the small cetacean with highest
level of incidental mortality in artisanal coastal gill nets in Santa Cruz and Tierra del Fuego
provinces, Argentina [4, 9–11]. In central and northern Patagonia of Argentina, interactions
with mid-water trawl fisheries have also been reported [12]. It is one of the target species of dol-
phin watching activities in northern Patagonia [13]. Peale’s dolphin is also affected by by-catch
in artisanal fisheries in Santa Cruz and Tierra del Fuego provinces, although in a lower propor-
tion than Commerson’s [4, 10, 14].

In addition, both Commerson’s and Peale’s dolphin could be influenced by climate change.
MacLeod [15] postulated that the distributional range of dolphins that inhabit shallow and
cold waters would be reduced by an increase of sea surface temperature. The potential impact
of these threats cannot be assessed without adequate information on population sizes and
trends. This lack of information is one of the main reasons that both species are listed as “Data
Deficient” by the IUCN [16, 17]. Commerson’s dolphin abundance has been estimated (mostly
at small scales) using both distance sampling [18–21] and mark-recapture methods [22, 23].
To date, only one large-scale population estimate of this species is available, from the early
2000s [24].

For Peale’s dolphin, there is an estimation of around 2400 individuals for the Magellan
region and some 200 animals in a local population off Chiloe [25, 26] but no abundance esti-
mates are available for the species in the Atlantic Ocean. Additionally, studies on spatial distri-
butions and habitat preferences of Commerson’s and Peale’s dolphins are also scarce and
generally limited to small parts of their range. For Commerson’s dolphin, studies were con-
ducted mainly in northern and central Patagonia of Argentina [3] while for Peale’s dolphin all
previous studies have been carried out along the Chilean coast [7, 26, 27].

The geographic distributional range of marine mammals is generally thought to be deter-
mined by water temperature whereas distribution at small scales is often associated with ocean-
ographic conditions which affect the distribution of their prey [14, 28, 29]. Thus, habitat
selection by top predator species in marine ecosystems is generally defined by physical, chemi-
cal and biological variables, generating a differential use of areas within the range of their distri-
butions [28, 30]. Detailed information on the areas preferred by a species, at different spatial
scales, is essential for understanding ecology and life history features, and crucial for
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conservation [31]. Any natural or anthropogenic environmental changes within preferred
areas could have profound impacts on the distribution and abundance of these species, causing
different responses in each [32].

Spatially explicit models enhance our knowledge of relationships between biological popula-
tion densities and the environment, allowing us to investigate which factors affect distribution
and abundance. Biogeographic variables such as sea surface temperature, depth, chlorophyll a
and thermal fronts are frequently used as proxies of prey distribution and have been related to
distribution of marine mammal in numerous studies ([3, 29, 33–35], among others).

Here we used generalized additive models (GAMs) to build spatially explicit models using
observed counts as a response variable in a manner similar to Density Surface Models (DSMs)
[36, 37]. Building an explicit spatial model means that we do not require a randomized survey
design (though of course, this would have been beneficial), allowing the use of data recorded
from platforms of opportunity [37]. This is particularly useful given the cost and logistic com-
plexities of studying cetaceans at sea.

The main goal of this study was modelling the abundance for Commerson’s and Peale’s dol-
phins in sub-Antarctic waters of the southwest South Atlantic Ocean in relation to environ-
mental variables. Results of this study give a better understanding of the habitat conditions
required for both taxa within their distributional range along the Patagonian shelf, especially in
southernmost Patagonia.

Materials and Methods

Study area and data collection

Abundance data on Commerson’s and Peale’s dolphin were collected during eight scientific
cruises on board of the vessels R/V Puerto Deseado and Tango SB-15 during austral summer
and fall months (November-April) between 2009 and 2015, along the Patagonian shelf (Fig 1).
Research was authorized by the Argentine Federal Government through the National Scientific
and Technical Research Council (CONICET).

Cetacean sightings were recorded on a portable handheld computer with integrated GPS
(Trimble Juno ST), using the free software CyberTracker (CyberTracker Software (Pty) Ltd
Reg. no. 97/01908/07, http://www.cybertracker.co.za). Surveys were conducted daily during
daylight hours (~ 12 hrs) at a mean vessel speed of 10 knots. During the surveys, two observers
collected the data from both sides of the vessel, through naked eye scans supplemented by use
of 7x50 binoculars with internal compass and reticle. A third observer assisted in the scans and
recorded observations.Observers switched between the three positions at 2 hour intervals.
Data recorded for each sighting included GPS position, date and time, sighting distance, sight-
ing angle, species, group size and composition. Vessel speed, air temperature, wind speed and
direction, Beaufort Sea State (BSS), cloud cover and visibility were recorded at the start of each
day and updated whenever they changed.

Data were collected using line transect sampling methodology [38]. Both species appeared
to be attracted to the ship (animals were frequently first seen on the vessel’s bow), violating
the fundamental assumption of distance sampling, that animals are detected at their initial
locations [38]. We therefore treated the data as if they were recorded from strip transects
(assuming that all animals within the strip were detected [39]). Strip half-widths of 300 m for
Commerson’s and 600 m for Peale’s dolphin were selected based on the frequency distribu-
tion of distances of sightings that could be recorded at their initial locations during this study
(n = 23 and n = 79 for Commerson’s and Peale’s dolphin respectively). There were no sight-
ings beyond 300m for Commerson’s dolphins and only two sightings beyond 600 m for
Peale’s dolphins.
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Fig 1. Tracks of the different scientific cruises surveys during austral summer and fall months. Each

single line of each cruise represents one day of survey effort. Black polygon indicates the region of study

analyzed. White polygon indicates the primary range of distribution of Commerson’s dolphin in the southwest

South Atlantic Ocean. Red polygon indicates the primary range of distribution of Peale’s dolphin in the

southwest South Atlantic Ocean.

doi:10.1371/journal.pone.0163441.g001
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Environmental data

The environmental variables were selected based on a combination of potential ecological sig-
nificance and data availability. Bathymetry data were derived from ETOPO (ETopo Digital
Maps) at a spatial resolution of 2’ (latitude and longitude). The nearest distance to coast was
calculated using the Spatial Analyst tools in ArcGis 9.3 (ESRI). Monthly averages of sea surface
temperature (SST) and of ocean colour (chlorophyll a, Chla) were obtained from Aqua-
MODIS (http://oceancolor.gsfc.nasa.gov), at 4km spatial resolution. Due to continuous cloud
cover over the southern portion of study area, satellite data for these variables were not avail-
able at higher temporal resolutions. Marine Geospatial Ecological Tools for ArcGIS [40] was
used to process the data and calculate the monthly averages of SST (°C) and Chla (mg m–3).

Data processing and analysis

Surveys used here were not specifically designed for recording cetaceans, because several
research projects were simultaneously conducted onboard the research vessels.

Spatially explicit models. For analysis purposes, each day of survey effort was considered
as a line transect. Each transect was divided into segments ~10 km long and 0.6 km or 1.2 km
width for Commerson’s and Peale’s dolphins respectively. Spatial models of abundance for
both species of dolphins were built using the ‘dsm’ package for R (http://github.com/
DistanceDevelopment/dsm) [37]. Generalized additive models (GAMs) with negative binomial
and Tweedie response distributions were fitted to investigate the relationships between the
sightings and covariates for Commerson’s and Peale’s dolphin, respectively. Explanatory envi-
ronmental variables were both static (geographic position, depth and distance to coast) and
dynamic (SST and Chla). Environmental variable values associated with each segment were
obtained using ArcGis 9.3 (ESRI); the Lambert Azimuthal Equal-area (South Pole) projection
was used. Bathymetry, Chla and SST were calculated as mean values for the segment while dis-
tance to coast was measured to centroid of each segment. SST and Chla values were estimated
from contemporaneous satellite images (same year and month as each survey).

As the coast of the survey area includes peninsulas and gulfs, a soap film smoother [41] was
used to model the complex coastline for the spatial term. All variables were fitted as smoothers.
Interactions between explanatory variables were not evaluated in the models presented here.

Exploratory analysis was carried out to test correlation among explanatory variables [42].
The absolute values of correlation were always less than 0.35; therefore all variables were used
in the global models. Models were constructed by a combination of forwards and backwards
selection, removing non-significant smooth term (in function of approximate p-values, [43])
and adding one variable at each step.

Smoothness selectionwas performed by restrictedmaximum likelihood (REML) [44]. Mod-
els were checked using the ‘gam.check’ function and spatial autocorrelation in the residuals
was evaluated using the ‘dsm.cor’ function, both in the ‘dsm’ package.

To predict abundance, grids of 3,143 and 6,611 predictive cells of 100 km2 were constructed
using the ‘fishnet’ tool in ArcGis 9.3 for Commerson’s and Peale’s dolphin, respectively. For
Peale’s dolphin, the prediction zone corresponded to the study area analyzed (Fig 1). For Com-
merson’s dolphin, however, the prediction zone was restricted to 200km from the shore, as
most sightings of this species were coastal.

For dynamic environmental variables, a monthly average of data from November to April
for each year (2009–2015) was used. Mean values of bathymetry, Chla and SST were estimated
for each grid cell and the centroid location of each cell was used to extract values from distance
to coast and location (northing and easting).
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The variance estimation of abundance models was obtained using methods detailed in [37,
45], which are included in the ‘dsm’ package. In order to estimate uncertainty per grid cell over
multiple time periods, the usual rule that the variance of a sum is the sum of the covariances
was used. For comparison we also calculated total abundances and maps of abundance and
coefficient of variation per month.

Results

Totals of 88 schools (212 individuals) of Commerson’s dolphin and 134 schools (465 individu-
als) of Peale’s dolphin were sighted in the 8,535 km surveyed over 55 days (Fig 2). Group size
ranged from 1–20 (mean = 2; standard deviation, SD = 2.28; median = 2) for Commerson’s
dolphin and from 1–15 (mean = 3.4, SD = 2.1, median = 3) for Peale’s dolphin. Most of the sur-
vey effort (85%) was conducted in shelf waters and all sightings of Commerson’s and 98.5% of
sightings of Peale’s dolphin were recorded in waters< 200 m depth. Commerson’s dolphin
was most frequently sighted close to shore (less than 60 km) while Peale’s dolphin occurred
over a wider range of distances from the coast (~3.5 to 300 km; Fig 2). Temperatures where
dolphins were present ranged from 7 to 14°C and 5 to 14.5°C for Commerson’s and Peale’s dol-
phin, respectively.

Spatially explicit model and habitat preferences of Commerson’s dolphin

The final spatial model to predict Commerson’s dolphin abundance included only geographic
position as explanatory variable, had an adjusted-R2 score of 0.159 and explained 83.4% of

Fig 2. Dolphin sightings. Spatial distribution and size group of sightings of Commerson’s (A) and Peale’s (B) dolphin in relation to bathymetry from all

scientific cruises surveys. Red line indicates the 200 m isobath. Green line indicates the 1000 m isobath.

doi:10.1371/journal.pone.0163441.g002
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deviance. This model indicates that the abundance of Commerson’s is higher near the coast,
mainly at 4600km northing and 4100km northing (Figs 2A, 3 and 4A). The estimated abun-
dance was 21,933 individuals (% coefficient of variation (CV) = 74%, 95% confidence intervals
(CI) = 6,013–80,012) in the studied region in summer-fall months. The model’s uncertainty
(Fig 4B) revealed low per-cell CV values close to the coast and higher values in the rest of the
area surveyed.Analysis showed little (<0.3) spatial autocorrelation in the residuals (Fig 5).

Spatially explicit model and habitat preferences of Peale’s dolphin

The final spatial model for Peale’s dolphin abundance retained smooth terms for geographic
position, depth and SST. Its adjusted-R2 score and percentage of deviance explained (0. 113
and 25.4% respectively) were lower than for the final model for Commerson’s dolphin. Peale’s
dolphins were more numerous further south and in shallow waters with SST values between
9°C and 18°C (Fig 6). The fitted spatial model predicted an abundance of 19,924 individuals
(CV = 19.6%, 95% CI = 12,878–30,823). Two hotspots are clearly distinguishable for Peale’s
dolphin, one in central Patagonian waters, east of the San Jorge Gulf (~ 4600km northing to
4800km northing, 400km easting-600km easting) and the other one in the southern portion of
the Tierra del Fuego Archipelago (~3700km northing-3800kmnorthing; Fig 7A). Estimates
with the highest uncertainty were found in the southern portion of the area covered in this
study (Fig 7B). A small amount of unmodelled correlation in residuals was observedbetween
adjacent segments in the fitted model (Fig 8).

Fig 7 summarizes the abundance and uncertainty over the time periods in which the surveys
took place by averaging the abundance and computing the “average uncertainty” as detailed
above. For comparison and to illustrate seasonal variations, S1, S2 and S3 Figs show the maps
of abundance and coefficient of variation per month, as well as a time series (with confidence
intervals) of the total abundance, respectively.

Discussion

This study provides the first broad-scale abundance estimate for Peale’s dolphin in Argentine
waters and an updated population size for Commerson’s dolphin in Patagonian Shelf waters.
Using spatially explicit models, we identified hotspots of density and increased the knowledge
of the ecological preferences of both species by surveying areas where similar studies had not
been conducted before. The general spatial distribution of sightings as well as group sizes for
both Commerson’s and Peale’s dolphins were consistent with previous studies on occurrence
and distribution of both species conducted in areas where previous work overlapped this study
[1, 6, 23, 46–48].

Peale’s dolphin had a wider offshore distribution than Commerson’s dolphin in all surveys
where both were present. Similar results in other areas were found by White et al. [49], who
reported a highly coastal distribution of Commerson’s dolphin during at-sea surveys around
the Malvinas (Falkland) Islands, whereas Peale’s dolphin was found to have a more extensive
distribution. Viddi et al. [27] also reported sightings of Peale’s dolphins close and far from
shore in northern Patagonia, Chile.

Despite Chla was not included as explanatory variable in the final model of both species, all
sightings of both cetaceans were recorded in zones with median to high primary productivity.
In addition, although relationships between abundance of these dolphins and frontal zones
were not investigated here, the distribution of sighting of both species seems to match with
frontal zones described in Acha et al. [50]. Commerson’s dolphin distribution overlaps with
the Patagonian tidal frontal zone. An equivalent situation occurs with Peale’s dolphin records
and the Patagonian cold estuarine zone. The occurrence of cetaceans in zones with high
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Fig 3. Relationships between the geographic position and the linear predictor in the model for

Commerson’s dolphin. The number in brackets in “s” gives the effective degrees of freedom (a measure of

flexibility) of each term. The contours (and colours) are the effect of the spatial smooth on abundance on the scale of

the link function.

doi:10.1371/journal.pone.0163441.g003
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primary and secondary productivity has been widely documented in different regions of the
world [35, 51–54].

Commerson’s and Peale’s dolphins were present mainly in shallow waters and their local
abundance showed a negative relationship with depth (although this only was significant in the
model for Peale’s dolphin), which is in accordance with studies by Goodall et al. [1, 6] and
White et al. [49]. Nevertheless, these studies also reported sightings of Commerson’s [1] and
Peale’s dolphins [6, 49] in areas which can only be reached by moving through deep waters
(more than 200m), such as Namuncurá (Burdwood) Bank (~54° S to 54.5°S, 56°W to 62°W),
Drake Passage and South Shetland Islands. For Commerson’s dolphin, most of these sightings
should be considered as representing vagrants or at least outside of their normal distributional
range since no new sightings of the species have been recorded further south of South America,
despite numerous cruises around Antarctica ([1], NAD personal obs.).

Peale’s dolphins were found over the Namuncurá (Burdwood) Bank during November 2014
and February 2015 surveys. At present, with available data it is not possible to determine
whether Peale’s dolphins remain in the Namuncurá (Burdwood) Bank area throughout the
year or if animals move to other adjacent zones such as Malvinas (Falkland) Island and/or
Tierra del Fuego. This question could be addressed with a greater number of systematic surveys
of these areas in different seasons.

While the values of sea surface temperature in the study area ranged from ~ 4 to 19°C, dol-
phins were present at intermediate values. These ranges were similar to those reported in previ-
ous studies [1, 3, 6]. Since this study covers a wide latitudinal gradient, variation in SST values

Fig 4. Spatially explicit model and uncertainty map of Commerson’s dolphin. Density surface model of abundance of Commerson’s dolphin in the

total study area (a). This map indicate more dolphins near the coast, mainly in waters around Puerto Deseado (~ 4600 km northing, 400km easting) and

South of Santa Cruz Province, Magellan Strait and San Sebastian Bay (~ 4100km northing, 100km easting). The map of per cell coefficient of variation

(CV) for the fitted model shows a gradient of values increasing with increasing distance to coast (b). Cell area is 100km2.

doi:10.1371/journal.pone.0163441.g004
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was often higher among transects within a survey than betweenmonths. SST was an important
predictor of abundance for Peale’s dolphins and since they inhabit cold-temperate shelf waters,
this relationship deserves special attention and predictive studies under different scenarios of
environmental change involving increases in SST should be considered.

Abundance estimation obtained in this study could be biased given that dolphins (especially
Commerson’s dolphins) showed a strong approaching behavior (hence no correction for
incomplete detectionwas made), thus, our results should be considered with caution. In future
studies, estimates positively biased as results of responsive movements towards the vessels
could be corrected using the dual-platform approach suggested by Palka and Hammond [55].

Best and Halpin [56] suggest that spatial models could be less reliable than conventional
distance sampling methods when there are many zeros in the data collected. This could be
the case for the model fitted to the Commerson’s dolphin data, as uncertainty increased uni-
formly with increasing distance to coast, where no observations were recorded. The model
for Peale’s dolphin revealed that uncertainty increased in unsampled deeper zones in the
south-east portion of study area. Plotting the uncertainty in these areas is tricky as the coeffi-
cient of variation is the ratio of the standard deviation and abundance estimate. As the esti-
mated abundance approaches zero, the CV can become very large (as we effectively divide by

Fig 5. Autocorrelation of deviance residuals between segments (lags) for the fitted density surface model of Commerson’s dolphin. The

dashed line represents the 95% confidence interval.

doi:10.1371/journal.pone.0163441.g005
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zero), so uncertainty in these areas (which can be located by looking at the abundance maps)
should be interpreted with caution.

Despite the relatively poor precision of estimates from the spatial models (and that the
model for Peale’s dolphin only explained 25% of deviance), the zones of higher densities identi-
fied for both species of dolphins were in agreement with the previous information for south-
west South Atlantic Ocean such as Puerto Deseado and south of Santa Cruz Province,
Magellan Strait and San Sebastian Bay for Commerson’s [1, 23, 24], and open waters east of
San Jorge Gulf and southern Tierra del Fuego for Peale’s dolphin [2, 6], suggesting that this
approach provides robust predictions of distribution.

The spatial modelling approach presented here is suited to the type of sighting data that can
be obtained in multi-purpose research cruises, when survey designs for collecting sightings
data are generally subordinate to other research tasks. This approach allows us to explore rela-
tionships between environmental covariates and the observeddata. It is usually expected that a
model-based approach to abundance estimation leads to smaller uncertainty estimates than
design-based estimates [37]. Even when this is not the case, the spatial nature of the abundance
estimates and the benefits from presentation as maps are extremely useful.

Abundance estimates provided in this study were based on surveys conducted during sum-
mer-fall months. Similar studies in winter months should be considered since seasonal changes
in distribution and abundance have previously been suggested for both dolphin’ species [1, 3,
6, 13, 23, 27, 47–49]. Inshore/offshore movements following prey have been proposed for
Commerson’s dolphin in the southern part of its distribution, with the species moving into
deeper waters during cold months [1, 9, 19, 20]. Stable isotope analysis of dolphin bones sug-
gested that, in Tierra del Fuego, Commerson’s dolphin consumes pelagic and benthopelagic
prey in coastal and continental shelf waters [57]. Stable isotopes in bones integrate several (5–
10) years of feeding information [58] and thus dolphins could be using coastal and continental

Fig 6. Relationships between the smooth terms and the linear predictor in the model for Peale’s dolphin. From left to right: (a) geographic

position (easting, northing), (b) depth, and (c) sea surface temperature (SST). Dashed lines represent 95% confidence intervals. The number in brackets

in each “s” gives the effective degrees of freedom (a measure of flexibility) of each term. The contours (and colours) are the effect of the spatial smooth

on abundance on the scale of the link function.

doi:10.1371/journal.pone.0163441.g006
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waters either in different years or within a year in different seasons. In addition, in northern
and central Patagonia, seasonal movements were related to temperature variations [48] and
reproductive behavior [23] respectively.

Winter offshore movements were also suggested for Peale’s dolphin in Tierra del Fuego,
Argentina [6] although seasonal movements are better documented for Chilean populations.
During land-based surveys along the west side of the Strait of Magellan, Lescrauwaet [47]
found an increase in abundance during summer whereas the number of animals was greater
during spring in the northern Patagonian fjords [27].

This study covered a wide range of the distribution of both dolphins in the Patagonian shelf,
representing the first large-scale study on the spatial distribution, overall abundance estimates
and habitat preferences for Peale’s dolphin in the southwest South Atlantic Ocean and the first
of this kind at the southern boundary of the distribution of Commerson’s dolphins.

Large-scale studies are important not only to better understand the variables affecting the
distribution and abundance of species but also to determine the environmental conditions
which define the edges of their ranges. This knowledge is particularly important to predict the
potential ecological responses of species to threats such as global climate change or habitat deg-
radation [15, 32]. Considering that Commerson’s and Peale’s dolphins are listed as “Data Defi-
cient” by the IUCN [16, 17] and that, given their coastal habits, they are exposed to numerous

Fig 7. Spatially explicit model and uncertainty map of Peale’s dolphin. Density surface model of average abundance of Peale’s dolphin in the study

area analyzed (a); averages were taken over the time periods where surveys were conducted, predicting using the appropriate dynamic variances for

that time period. The map of per cell coefficient of variation (CV) for the fitted model shows the largest uncertainty in the southeast portion of the study

area (b); uncertainty was combined over multiple time periods by noting that the variance of a sum is the sum of the covariances. Cell area is 100km2.

doi:10.1371/journal.pone.0163441.g007
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threats, this type of information can be useful for wildlife managers to help design conservation
strategies such as identifying priority areas for conservation.

Supporting Information

S1 Fig. Map of estimated abundance for eachmonth when surveyswere conducted for Pea-
le's dolphin. Each estimate was calculated using dynamic covariate values averaged over the
month in question. Distribution (though not necessarily magnitude) is relatively consistent
over time. Survey lines and observations are overlaid.
(TIF)

S2 Fig. Map of coefficient of variation for eachmonth when surveyswere conducted for
Peale's dolphin. Each estimate was calculated using dynamic covariate values averaged over
the month in question. Survey lines and observations are overlaid. Uncertainty is highest in
unsurveyed areas and lowest where survey effort was expended, in the month it was expended.
(TIF)

S3 Fig. Estimates of abundance (points) and corresponding confidence intervals (lines) for
eachmonth when surveyswere conducted for Peale's dolphin. Each estimate was calculated

Fig 8. Autocorrelation of deviance residuals between segments (lags) for the fitted density surface model of Peale’s dolphin. The dashed line

represents the 95% confidence interval.

doi:10.1371/journal.pone.0163441.g008
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using dynamic covariate values averaged over the month in question.
(TIF)
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