41 research outputs found
Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload
Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high
resolution devices for hard X-ray imaging and spectroscopic studies. The new
series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical
Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the
CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of
20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these
modules are essentially manufactured for commercial applications, we have
carried out a series of comprehensive tests on these modules so that they can
be confidently used in space-borne systems. These tests lead us to select the
best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper
presents the characterization of CZT modules and the criteria followed for
selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries,
along with three CZT modules, a high spatial resolution CMOS detector for high
resolution imaging of transient X-ray events. Therefore, we discuss the
characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental
Astronomy (in press
Gamma-Ray Telescopes (in "400 Years of Astronomical Telescopes")
The last half-century has seen dramatic developments in gamma-ray telescopes,
from their initial conception and development through to their blossoming into
full maturity as a potent research tool in astronomy. Gamma-ray telescopes are
leading research in diverse areas such as gamma-ray bursts, blazars, Galactic
transients, and the Galactic distribution of aluminum-26.Comment: 11 pages, 6 figures/ in "400 Years of Astronomical Telescopes: A
Review of History, Science and Technology", ed. B.R. Brandl, R. Stuik, & J.K.
Katgert-Merkeli (Exp. Astron. 26, 111-122 [2009]
Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole
Massive black holes are believed to reside at the centres of most galaxies.
They can be- come detectable by accretion of matter, either continuously from a
large gas reservoir or impulsively from the tidal disruption of a passing star,
and conversion of the gravitational energy of the infalling matter to light.
Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be
variable but have never been observed to turn on or off. Tidal disruption of
stars by dormant massive black holes has been inferred indirectly but the on-
set of a tidal disruption event has never been observed. Here we report the
first discovery of the onset of a relativistic accretion-powered jet in the new
extragalactic transient, Swift J164449.3+573451. The behaviour of this new
source differs from both theoretical models of tidal disruption events and
observations of the jet-dominated AGN known as blazars. These differences may
stem from transient effects associated with the onset of a powerful jet. Such
an event in the massive black hole at the centre of our Milky Way galaxy could
strongly ionize the upper atmosphere of the Earth, if beamed towards us.Comment: Submitted to Nature. 4 pages, 3 figures (main paper). 26 pages, 13
figures (supplementary information
Swift-XRT follow-up of gravitational wave triggers during the third aLIGO/Virgo observing run
The Neil Gehrels Swift Observatory followed up 18 gravitational wave (GW) triggers from the LIGO/Virgo collaboration during the O3 observing run in 2019/2020, performing approximately 6500 pointings in total. Of these events, four were finally classified (if real) as binary black hole (BH) triggers, six as binary neutron star (NS) events, two each of NSBH and Mass Gap triggers, one an unmodelled (Burst) trigger, and the remaining three were subsequently retracted. Thus far, four of these O3 triggers have been formally confirmed as real gravitational wave events. While no likely electromagnetic counterparts to any of these GW events have been identified in the X-ray data (to an average upper limit of 3.60 x 10^{-12} erg cm^{-2} s^{-1} over 0.3-10 keV), or at other wavelengths, we present a summary of all the Swift-XRT observations performed during O3, together with typical upper limits for each trigger observed. The majority of X-ray sources detected during O3 were previously uncatalogued; while some of these will be new (transient) sources, others are simply too faint to have been detected by earlier survey missions such as ROSAT. The all-sky survey currently being performed by eROSITA will be a very useful comparison for future observing runs, reducing the number of apparent candidate X-ray counterparts by up to 95 per cent
Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers
On 2020 February 24, during their third observing run ("O3"), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg2), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here, we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, as well as the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, , and an upper limit on the isotropic-equivalent energy of a blast wave E < 4.1 × 1051 erg (assuming typical GRB parameters)
Recommended from our members
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 8 8-+ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Past, Present, and Future X-Ray and Gamma-Ray Missions
X- and -ray astronomy began in the early sixties of the last century with balloons flights, sounding rocket experiment and satellites. Long before space satellite detected X- and -rays emitted by cosmic sources, scientists had known that the Universe should be producing these photons. In this chapter we provided an overview of past and present missions that has made the X- and -ray astronomy an integral part of astronomical research, and prospects of future developments